Answer:
The chemical potential of 2-propanol in solution relative to that of pure 2-propanol is lower by 2.63x10⁻³.
Explanation:
The chemical potential of 2-propanol in solution relative to that of pure 2-propanol can be calculated using the following equation:
<u>Where:</u>
<em>μ (l): is the chemical potential of 2-propanol in solution </em>
<em>μ° (l): is the chemical potential of pure 2-propanol </em>
<em>R: is the gas constant = 8.314 J K⁻¹ mol⁻¹ </em>
<em>T: is the temperature = 82.3 °C = 355.3 K </em>
<em>x: is the mole fraction of 2-propanol = 0.41 </em>

Therefore, the chemical potential of 2-propanol in solution relative to that of pure 2-propanol is lower by 2.63x10⁻³.
I hope it helps you!
Answer:
0.0001637 mol
Explanation:
PV = nRT
Very important formula in chem
2.3 atm * 0.0017 L = n * 0.082057 * 291 K
= 0.0001637 mol O2
This concept is very important in chem, practice it.
Answer:
Explanation: In my opinion law is stated as fact because it is passes through and approved by many peoples but theory is an idea someone has and is not approved and is set on a base of beliefs.
Answer:
0.5133805136 moles.
Explanation:
1 gram of Al2(Co3)3 equals 0.0017112683785004 moles, we need the amount of moles produced in 300 grams of Al2(CO3)3, so we have to multiply 1 gram of Al2(CO3)3 times 300: 0.0017112683785004 x 300, in conclusion,
300 grams of Al2(Co3)3 equals 0.5133805136.
The best and most correct answer among the choices provided by your question is the first choice.
<span>Although fusion is an energetically favorable reaction for light nuclei, it does not occur under standard conditions on Earth because: fission reactions are always favored over fusion reactions.</span>
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!