Answer:
Relative age-dating involves comparing a rock layer or rock structure with other near-by layers or structures. Using the principles of superposition and cross-cutting relationships, and structures such as unconformities, one can determine the order of geological events.
Answer:
<em><u>option</u></em><em><u> (</u></em><em><u>C)</u></em><em><u> </u></em><em><u>is </u></em><em><u>right</u></em><em><u> answer</u></em>
Explanation:
I think it's helps you
Answer:
v = 0
Explanation:
This problem can be solved by taking into account:
- The equation for the calculation of the period in a spring-masss system
( 1 )
- The equation for the velocity of a simple harmonic motion
( 2 )
where m is the mass of the block, k is the spring constant, A is the amplitude (in this case A = 14 cm) and v is the velocity of the block
Hence

and by reeplacing it in ( 2 ):

In this case for 0.9 s the velocity is zero, that is, the block is in a position with the max displacement from the equilibrium.
Answer: a) vcar= 7 m/s ; b) a train= 0.65 m/s^2
Explanation: By using the kinematic equation for the car and the train we can determine the above values of the car velocity and the acceletarion of the train, respectively.
We have for the car
distance = v car* t, considering the length of train (81.1 m) travel by the car during the first 11.6 s
the v car = distance/time= 81.1 m/11.6s= 7 m/s
In order to calculate the acceleration we have to use the kinematic equation for the train from the rest
distance train = (a* t^2)/2
distance train : distance travel by the car at constant speed
so distance train= (vcar*36.35)m=421 m
the a traiin= (2* 421 m)/(36s)^2=0.65 m/s^2