Answer:
The minimum compression is
Explanation:
From the question we are told that
The mass of the block is
The spring constant is
The coefficient of static friction is
For the the block not slip it mean the sum of forces acting on the horizontal axis is equal to the forces acting on the vertical axis
Now the force acting on the vertical axis is the force due to gravity which is mathematically given as
And the force acting on the horizontal axis is force due to the spring which is mathematically represented as
where x is the minimum compression to keep the block from slipping
Now equating this two formulas and making x the subject
substituting values we have
When dealing with multiple forces acting on a body, it is advisable to draw a free-body diagram like that shown in the picture. There are four forces acting on the box: weight (W) pointing straight down, normal force perpendicular to the slope denoted as Fn, force used to push the box upwards along the slope and the frictional force acting opposite to the direction of motion of the box denoted as Ff. Frictional force is equal to coefficient of kinetic friction (μk) multiplied with Fn.
∑Fy = Fn - mgcos30° = 0
Fn = (50)(9.81)(cos 16) = 471.5 N
When in motion, the net force is equal to mass times acceleration according to Newton's 2nd Law of Motion:
Fnet = F - μk*Fn - mgsin30° = ma
250 - (0.2)(471.5 N) - (50)(sin 16°) = (50)(a)
a = 2.84 m/s²
Answer:
(1) Sure, the frequency is 1000 Hz.
Explanation:
Frequency = wave speed ÷ wave distance
wave speed = 100 m/s
wave distance = 10 cm = 10/100 = 0.1 m
Frequency = 100 ÷ 0.1 = 1000 Hz