Given:
m(mass of the box)=10 Kg
t(time of impact)=4 sec
u(initial velocity)=0.(as the body is initially at rest).
v(final velocity)=25m/s
Now we know that
v=u+at
Where v is the final velocity
u is the initial velocity
a is the acceleration acting on the body
t is the time of impact
Substituting these values we get
25=0+a x 4
4a=25
a=6.25m/s^2
Now we also know that
F=mxa
F=10 x6.25
F=62.5N
Answer:
b. Both stars will have the same shift.
Explanation:
It's a very simple problem to solve. Star 1 is approaching toward Earth with a speed v, so let's assume that the change in Doppler Shift is +F and Star 2 is moving away so the change in Doppler shift is -F. But it's time to notice the speed of both stars and that is same but only directions are different. speed is the main factor here. The magnitude of both shifts is F as we can see and + and - are showing there direction of motion. So, because of same amount of speed, both stars will have same shift magnitude. (Just the directions are different)
The pair of blocks is insulated, so no energy escapes. The pair of temperatures possible is 95 +95 temperature blocks.
<h3>What is thermal equilibrium?</h3>
When two objects are in direct contact and transfer heat through conduction. When the both object attain same temperature after sometime, they are called in thermal equilibrium.
Two identical blocks are heated to different temperatures. The blocks are placed so that they touch, and heat begins to flow between blocks. The heat will continue to until and unless they have same temperatures. After they being isolated, the temperature of both will be same and no heat is transferred outside.
Thus, the pair of temperatures possible is 95 +95 temperature blocks.
Learn more about temperature.
brainly.com/question/11464844
#SPJ1
Answer:
Since the ball becomes positively charged, it will repel as like charges repel.
Endo I think but look it up jus in case