The speed of the object can be calculated using the formula:
Speed = distance/time
The given values are:
distance = 62.43 m
time = 38.4 s
Solution:
speed = 62.43 m / 38.4 s = 1.63 m/s
Therefore, the speed of an object that travels 62.43m in 38.4s is <span> 1.63 m/s.</span>
Answer:
A planet's mass has no effect on its orbit around the Sun.
Explanation:
The kepler's third law tells us:

where
is the orbit period and
is the semi-major axis.
As we can see from the equation, the period depends only on the measure of the semi-major axis
of the orbit, that is, how far a planet is from the sun.
The equation tells us that the closer a planet is to the sun, the faster it will go around it.
The mass does not appear in the equation to calculate the period.
This is why it is concluded from the third law of Kepler that<u> the period, or the orbit of a planet around the sun, does not depend on its mass.</u>
the answer i: A planet's mass has no effect on its orbit around the Sun.
When it’s about to be dropped
Answer:

Explanation:
Formula for AVERAGE acceleration

is Final Velocity
is Initial Velocity
is Final Time
is Initial Time
Most of the time, the initial time will be 0, so you won't have to subtract.
5.610^-26 m is closest to the wavelength of the light.
E=K.E - Work function
hc/λ=1.10-4.65
hc/λ=3.50
λ=hc/3.50
λ=6.626×10 −34J⋅s×3×10^8
λ=5.610^-26 m
Because the relationship between wave frequency and wavelength is inverse, gamma rays have extremely short wavelengths that are only a fraction of the size of atoms, whereas other wavelengths can reach as far as the universe. Regardless of the medium they travel through, electromagnetic radiation's wavelengths are typically expressed in terms of the vacuum wavelength, even though this isn't always stated explicitly.
The wavelength of electromagnetic radiation affects its behavior. The speed of light is equal to wavelength times frequency. Frequency multiplied by the Planck constant equals energy. 1/wavelength is the wave number in cm. Along with the wavelengths of different parts of the electromagnetic spectrum, a rough estimation of the wavelength size is displayed.
To know more about wavelength visit : brainly.com/question/14530620
#SPJ4