Option B The thickness of the central portion of a thin conveying lens can be determined very accurately by using a micrometer screw gauge.
<h3>What can be measured using a micrometer screw gauge?</h3>
One micrometer of thickness can be measured with a micron micrometre screw gauge. A Use of Micrometer Screw Gauge as like example Upon turning the screw of the micrometer screw gauge four times, a 2 mm space is covered.
<h3>What purposes does a micrometer serve?</h3>
A tool known as a micrometer is used to measure solid objects’ lengths, thicknesses, and other dimensions precisely and linearly.
<h3>What is the micrometer screw gauge’s SI unit?</h3>
The SI symbol m is also known as a micron, which is an SI-derived unit of length equaling 1106 meters, where 106 is the SI standard prefix for the prefix “micro-.” A micrometer is one-millionth of a meter.
To know more about screw gauges, visit:
brainly.com/question/4704005
#SPJ13
Yes that is correct. We know this because 4.00 x 10 4 Pa is constant. If you have 2.00×10−3m3 then you do the following: (2.00×10^−3)(4.00×10^<span> 4) = </span>8.00×10^−3. That is how you get your answer
Total resultant velocity=5.11-3.27=1.84m/s
- m_1=61.4kg
- m_2=109kg
- v_1=1.84m/s
- v_2=?






Answer:
vo=5.87m/s
Explanation:
Hello! In this problem we have a uniformly varied rectilinear movement.
Taking into account the data:
α =69.2
vf = 10m / s
h=2.7m
g=9.8m/s2
We know we want to know the speed on the y axis.
We calculate vfy
vfy = 10m / s * (sen69.2) = 9.35m / s
We can use the following equation.

We clear the vo (initial speed)


vo=5.87m/s
A = (Vf-Vi) / t,
a = (6-0)/3 = 2m/s^2,
F = ma = 2 * 2 = 4N