Answer:
If the temperature of the colder object rises by the same amount as the temperature of the hotter object drops, then <u>the specific heats of both objects will be equal.</u>
Explanation:
If the temperature of the colder object rises by the same amount as the temperature of the hotter object drops when the two<u> objects of same mass</u> are brought into contact, then their specific heat capacity is equal.
<u>We can prove this by the equation of heat for the two bodies:</u>
<em>According to given condition,</em>


<em>when there is no heat loss from the system of two bodies then </em>


- Thermal conductivity is ultimately affects the rate of heat transfer, however the bodies will attain their final temperature based upon their mass and their specific heat capacities.
The temperature of the colder object will rise twice as much as the temperature of the hotter object only in two cases:
- when the specific heat of the colder object is half the specific heat of the hotter object while mass is equal for both.
OR
- the mass of colder object is half the mass of the hotter object while their specific heat is same.
Answer:
(a) has the highest frequency
Explanation:
E = hf...where E(is the energy of a photon);h(is the planck's constant) and f is the frequency of the photon
Whereby this formula shows us that energy of a photon is directly proportional to its frequency
So hence if the energy is high then the frequency of the photon is also high
Average speed = total distance / total time
total distance = 40 + 20 = 60km
total time taken = 10 + 5 = 15 minutes
Average speed = 60/15 = 4km/min
Acceleration of the ball is 
Explanation:
The acceleration of the ball can be found by using Newton's second law of motion, which states that the net force acting on an object is equal to the product between the mass of the object and its acceleration:

where
F is the net force
m is the mass
a is the acceleration
For the ball in this problem, we have
m = 0.50 kg (mass)
F = 25 N (force)
thereofre, the acceleration of the ball is

Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly