Question #1:
a). The sketch is attached to this answer.
b). The equivalent resistance of 30Ω and 50Ω in parallel is
1 / (1/30 + 1/50) =
18.75 Ωc). I = V/R = (100/30) =
(3 and 1/3) Amperesd). Follow the wires, and you see that the 50Ω resistor is
connected directly to the battery, and so is the voltmeter.
So the voltage across the 50Ω resistor, and the reading
on the voltmeter, is
100 volts.e). I = V/R
Through the 30Ω resistor: I = 3-1/3 A
Through the 50Ω resistor: I = 2 A
f). In the parallel circuit, both resistors are connected
directly to the battery. So neither resistor even knows
that the other one is there.
Each resistor sees 100 volts,
and the current through each resistor is 100/R, just as if
it were the only resistor in the circuit.
Answer:
57300 N
Explanation:
The container has a mass of 5300 kg, the weight of the container is:
f = m * a
w = m * g
w = 5300 * 9.81 = 52000 N
However this container was moving with more acceleration, so dynamic loads appear.
w' = m * (g + a)
w' = 5300 * (9.81 + 1) = 57300 N
The rating for the cable was 50000 N
The maximum load was exceeded by:
57300 / 50000 - 1 = 14.6%
<h2>
Resultant is 235.54 pounds at an angle 44.16° to X axis.</h2>
Explanation:
Forces are 100 pound and 150 pound and angles with x axis are 20°and 60°.
That is force 1 is 100 pound with x axis at 20°
F₁ = 100 cos 20 i + 100 sin 20 j
F₁ = 93.97 i + 34.20 j
That is force 2 is 150 pound with x axis at 60°
F₂ = 150 cos 60 i + 150 sin 60 j
F₂ = 75 i + 129.90 j
F₁ + F₂ = 93.97 i + 34.20 j + 75 i + 129.90 j
F₁ + F₂ = 168.97 i + 164.10 j

Resultant is 235.54 pounds at an angle 44.16° to X axis.