At a distance r from a charge e on a particle of mass m the electric field value is 8.9876 × 10⁹ N·m²/C². Divide the magnitude of the charge by the square of the distance of the charge from the point. Multiply the value from step 1 with Coulomb's constant.
<h3>what is magnitude ?</h3>
Magnitude can be defined as the maximum extent of size and the direction of an object.
It is used as a common factor in vector and scalar quantities, as we know scalar quantities are those quantities that have magnitude only and vector quantities are those quantities have both magnitude and direction.
There are different ways where magnitude is used Magnitude of earthquake, charge on an electron, force, displacement, Magnitude of gravitational force
For more details regarding magnitude, visit
brainly.com/question/28242822
#SPJ1
Answer:
C. Pulmonary endurance
Explanation:
I'm pretty sure it's "C" because cardiovascular and pulmonary endurance are the same thing and usually you'd hear cardiovascular more than pulmonary.
Sorry if I'm wrong!
Formula for terminal
velocity is:
Vt = √(2mg/ρACd)
<span>Vt = terminal velocity = ?
<span>m = mass of the falling object = 72 kg
<span>g = gravitational acceleration = 9.81 m/s^2
<span>Cd = drag coefficient = 0.80
<span>ρ = density of the fluid/gas = 1.2 kg/m^3</span>
<span>A = projected area of the object (feet first) = 0.21 m * 0.41
m = 0.0861 m^2
Therefore:</span></span></span></span></span>
Vt = √(2 * 72
* 9.81 / 1.2 * 0.0861 * 0.80)
<span>Vt = 130.73 m/s</span>
Answer:

Explanation:
Given that
Wavelength λ=192 nm
So energy of photon,E

Now by putting the values




We know that
Kinetic energy given as



