The answer for the following problem is mentioned below.
- <u><em>Therefore the final volume of the gas is 52.7 ml.</em></u>
Explanation:
Given:
Initial pressure (
) = 290 kPa
Final pressure (
) = 104 kPa
Initial volume (
) = 18.9 ml
To find:
Final volume (
)
We know;
From the ideal gas equation;
P × V = n × R × T
where;
P represents the pressure of the gas
V represents the volume of gas
n represents the no of the moles
R represents the universal gas constant
T represents the temperature of the gas
So;
P × V = constant
P ∝ 
From the above equation;

represents the initial pressure of the gas
represents the final pressure of the gas
represents the initial volume of the gas
represents the final volume of the gas
Substituting the values of the above equation;
= 
= 52.7 ml
<u><em>Therefore the final volume of the gas is 52.7 ml.</em></u>
I think the correct answers are X2Y and X3Y, X2Y5 and X3Y5, and X4Y2 and X3Y,
for the following reason:
If you look at the combining masses of X and Y in
each of the two compounds,
The first compound contains 0.25g of X combined with
0.75g of Y
so the ratio (by mass) of X to Y = 1 : 3
The second compound contains 0.33 g of X combined with
0.67 g of Y
so the ratio (by mass) of X to Y = 1 : 2
Now, you suppose to prepare each of these two
compounds, starting with the same fixed mass of element Y ( I will choose 12g
of Y for an easy calculation!)
The first compound will then contain 4g of X and 12g
of Y
The second compound will then contain 6g of X and
12g of Y
<span>The ratio which combined
the masses of X and the fixed mass (12g) of Y
= 4 : 6
<span>or 2 : 3 </span>
So, the ratio of MOLES of X which combined with the
fixed amount of Y in the two compounds is also = 2 : 3 </span>
The two compounds given with the plausible formula must therefore contain
the same ratio.
Answer:
hope it helps ❤
Explanation:
Methane only has london dispersion forces since it is nonpolar. London dispersion force is the weakest intermolecular force, so the forces between its molecules will be weak. This leads to a low boiling point that is lower than room temperature, which makes it a gas at room temperature.
Answer:
The Periodic Table can be divided into s, d, p, and f sublevel blocks. For elements in the s sublevel block, all valence electrons are found in s orbitals. For elements in the p sublevel block, the highest energy valence electrons are found in p orbitals.
Explanation: