Answer:
<u>the reaction will shift to the left </u>and produce more reactants
Explanation:
Step 1: data given
Kc = 190
Temperature = 1000 K
[CO] = 0.025 M
[H2] = 0.045 M
[H2O] = 0.025 M
[CH4] = 0.046 M
When Q=Kc, the system is at equilibrium and there is no shift to either the left or the right.
When Q<Kc, there are more reactants than products. As a result, some of the reactants will become products, causing the reaction to shift to the right.
When Q>Kc, there are more products than reactants. To decrease the amount of products, the reaction will shift to the left and produce more reactants
Step 2: The balanced equation
CO(g) + 3 H2(g) ⇌ H2O(g) + CH4(g)
Step 3: calculate Q
Q = [H2O][CH4] / [CO][H2]³
Q = (0.025*0.046) / (0.025*0.045³)
Q = 504.8
Q > Kc
This means there are more products than reactants. To decrease the amount of products, <u>the reaction will shift to the left </u>and produce more reactants
Answer:
3.9
Explanation:
Let's consider the following reaction at equilibrium.
CO(g) + Cl₂(g) ↔ COCl₂(g)
We can find the pressures at equilibrium using an ICE chart.
CO(g) + Cl₂(g) ↔ COCl₂(g)
I 0.96 1.15 0
C -x -x +x
E 0.96-x 1.15-x x
The sum of the partial pressures is equal to the total pressure.
pCO + pCl₂ + pCOCl₂ = 1.47
(0.96-x) + (1.15-x) + x = 1.47
2.11 - x = 1.47
x = 0.64
The pressures at equilibrium are:
pCO = 0.96 - x = 0.32 atm
pCl₂ = 1.15 - x = 0.51 atm
pCOCl₂ = x = 0.64 atm
The pressure equilibrium constant (Kp) is:
Kp = pCOCl₂ / pCO × pCl₂
Kp = 0.64 / 0.32 × 0.51
Kp = 3.9
Answer:
The answer would be 0.198 liters.
Explanation:
Message me for any questions.
Near the coasts and Great Lakes.