Ibuprofen is synthesized by reacting ethyl 2-(4-isobutylphenyl)acetate with base, the base abstracts the acidic proton and enolate is formed which on reaction with diethyl carbonate generates diethyl 2-(4-isobutylphenyl)malonate
(A). diethyl 2-(4-isobutylphenyl)malonate on treatment with Base again looses the acidic proton and forms enolate. The enolate with treatment with Methyl Iodide yields diethyl 2-(4-isobutylphenyl)-2-methylmalonate
(B). diethyl 2-(4-isobutylphenyl)-2-methylmalonate on
hydrolysis give
Ibuprofen.
i. The dissolution of PbSO₄ in water entails its ionizing into its constituent ions:

---
ii. Given the dissolution of some substance
,
the Ksp, or the solubility product constant, of the preceding equation takes the general form
.
The concentrations of pure solids (like substance A) and liquids are excluded from the equilibrium expression.
So, given our dissociation equation in question i., our Ksp expression would be written as:
.
---
iii. Presumably, what we're being asked for here is the <em>molar </em>solubility of PbSO4 (at the standard 25 °C, as Ksp is temperature dependent). We have all the information needed to calculate the molar solubility. Since the Ksp tells us the ratio of equilibrium concentrations of PbSO4 in solution, we can consider either [Pb2+] or [SO4^2-] as equivalent to our molar solubility (since the concentration of either ion is the extent to which solid PbSO4 will dissociate or dissolve in water).
We know that Ksp = [Pb2+][SO4^2-], and we are given the value of the Ksp of for PbSO4 as 1.3 × 10⁻⁸. Since the molar ratio between the two ions are the same, we can use an equivalent variable to represent both:

So, the molar solubility of PbSO4 is 1.1 × 10⁻⁴ mol/L. The answer is given to two significant figures since the Ksp is given to two significant figures.
Depends on what compound we’re talking about here
Answer:
a kind of radiation including visible light, radio waves, gamma rays, and X-rays, in which electric and magnetic fields vary simultaneously.
Carbon: C
Oxygen: O2
C + O2 —> CO2
Reactants Product