Answer : The molal freezing point depression constant of liquid X is, 
Explanation : Given,
Mass of urea (solute) = 5.90 g
Mass of liquid X (solvent) = 450 g = 0.450 kg
Molar mass of urea = 60 g/mole
Formula used :

where,
= change in freezing point
= freezing point of solution = 
= freezing point of liquid X = 
i = Van't Hoff factor = 1 (for non-electrolyte)
= Molal-freezing-point-depression constant = ?
m = molality
Now put all the given values in this formula, we get


Therefore, the molal freezing point depression constant of liquid X is, 
Answer: 64
Explanation:
you just multiple the 3 numbers to get the answer (i’m in chemistry and just did this question lol)
He proposed that energy levels of electrons are discrete and that the electrons revolve in stable orbits around the atomic nucleus but can jump from one energy level (or orbit) to another.
Natural vs. Synthetic Venn Diagram: Natural chemicals are produced by nature without any human intervention. Synthetic chemicals are made by humans using methods different than those nature uses, and these chemical structures may or may not be found in nature
That they both will be the same average kinetic energy