<span>In the Bronsted-Lowry model of acids and bases, a(n) _acid____ is a hydrogen donor and a(n) _base____ is a hydrogen acceptor.</span>
The reaction between N₂ and F₂ gives Nitrogen trifluoride as the product. The balanced equation is;
N₂ + 3F₂ → 2NF₃
The stoichiometric ratio between N₂ and NF₃ is 1 : 2
Hence,
moles of N₂ / moles of F₂ = 1 / 2
moles of N₂ / 25 mol = 0.5
moles of N₂ = 0.5 x 25 mol = 12.5 mol
Hence N₂ moles needed = 12.5 mol
At STP (273 K and 1 atm) 1 mol of gas = 22.4 L
Hence needed N₂ volume = 22.4 L mol⁻¹ x 12.5 mol
= 280 L
Answer: Charles's law, Avogadro's law andd Boyle's law.
Charles law states the constant ratio of volume to temperature, at constant pressure. Boyle's law states the constat product of pressure and volumen at constant temperature. Avogadro's law states that equal volumes of gases at the same temperature and pressure have equal number of particles.
So, all those three laws combined state the relation of pressure, volume, temperature and number of particles of a gas, which is what the ideal gas law does: PV = n RT.