Answer:
Electrolytes are defined as those compounds which dissolve in a solvent such as water to produce a solution which conducts electric current easily.
Explanation:
Electrolytes are chemical compounds that dissolve in a solvent such as water and dissociate into ions (cations and anions) which helps to conduct electric current. They can be solids, liquids, or solutions and examples include all ionic compounds such as sodium chloride, calcium chloride, etc.
When electrodes are placed in a solution containing an electrolyte, the ions produced in the solution move from one electrode to the other. The negatively charged ions called anions are attracted to the positive electrode and the positively charged ions called cations are attracted to the negative electrode. This movement of ions generates an electric current. Electrolytes are also needed for the various electrochemical processes in living things and the main ions in these electrolytes are sodium (Na+), calcium (Ca2+), potassium (K+), magnesium (Mg2+), chloride (Cl-), etc.
I think it's easiest to find the pOH from the given [OH-] first.
-log(1x10^-5)
pOH=5
Then find the pH.
pOH+pH=14
5+pH=14
pH=9
Then find the [H+] using the pH.
antilog(-9) (if you dont have an antilog button use 10^-9)
[H+]=1x10^-9
Based on Beer-Lambert's Law,
A = εcl ------(1)
where A = absorbance
ε = molar absorptivity
c = concentration
l = path length
Step 1: Calculate the concentration of the diluted Fe3+ standard
Use:
V1M1 = V2M2
M2 = V1M1/V2 = 10 ml*6.35*10⁻⁴M/55 ml = 1.154*10⁻⁴ M
Step 2 : Calculate the concentration of the sample solution
Based on equation (1) we have:
A(Fe3+) = ε(1.154*10⁻⁴)(1)
A(sample) = ε(C)(4.4)
It is given that the absorbances match under the given path length conditions, i.e.
ε(1.154*10⁻⁴)(1) = ε(C)(4.4)
C = 0.262*10⁻⁴ M
This is the concentration of Fe3+ in 100 ml of well water sample
Step 3: Calculate the concentration of Fe3+ in the original sample
Use V1M1 = V2M2
M1 = V2M2/V1 = 100 ml * 0.262*10⁻⁴ M/35 ml = 7.49*10⁻⁵M
Ans: Concentration of F3+ in the well water sample is 7.49*10⁻⁵M
Answer:
The volume is 10,92 L
Explanation:
We use the formula PV=nRT:
V= (nRT)/P
V= (0,500 mol x 0,082 l atm/K mol x 799 K)/3,00 atm
<em>V= 10,91966667 L</em>