The specific gravity of a sample is the ratio of the density of the sample with respect to one standard sample. The standard sample used in specific gravity calculation is water whose density is 1 g/mL. The solution having specific gravity 1.30 is the density of the sample that is 1.30 g/mL. Thus the weight of the 30 mL sample is (30×1.30) = 39 g.
Now the mass of the 10 mL of water is 10 g as density of water is 10 g/mL. Thus after addition the total mass of the solution is (39 + 10) = 49g and the volume is (30 + 10) = 40 mL. Thus the density of the mixture will be
g/mL. Thus the specific gravity of the mixed sample will be 1.225 g/mL.
Answer:
3.59 moles
Explanation:
Hopefully this helps! :)
Mark as brainliest if right!
Molar Mass of CCl4= 12+4(35.5)=154 g/mol g Carbon= 45.0g/(154 g/mol)=0.292 mole
Given mass of Scandium = 50.0 g
Increase in temperature of the metal when heated = 
Heat absorbed by Scandium = 
The equation showing the relationship between heat, mass, specific heat and temperature change:

Where Q is heat = 
m is mass = 50.0 g
ΔT = 
On plugging in the values and solving for C(specific heat) we get,
=50.0g(C)(
)
C = 0.491
Specific heat of the metal = 0.491