Answer:
Final temperature = 1279.25 K
Explanation:
We can solve this using the formula for Charles law since we are given volume and temperature.
From Charles law, we know that;
V1/T1 = V2/T2
Where;
T1 is the initial temperature
V1 is the initial volume
T2 is the final temperature
V2 is the final volume
We are given;
V1 = 2 L
T1 = 301 K
V2 = 8.5 L
Thus, making T2 the subject, we have;
T2 = V2•T1/V1
Plugging in the relevant values;
T2 = 8.5 × 301/2
T2 = 1279.25 K
Answer:
C11H25SO4
Explanation:
The total mass of the compound is 253.4 g, so, the mass of each element will be:
C: 52.14% of 253.4 = 0.5214x253.4 = 132.12 g
H: 9.946% of 253.4 = 0.09946x253.4 = 25.20 g
S: 12.66% of 253.4 = 0.1266x253.4 = 32.08 g
O: 25.26% of 253.4 = 0.2526x253.4 = 64.00 g
The molar mass are: C = 12 g/mol, H 1 g/mol, S = 32 g/mol, and O = 16 g/mol
So, to know how much moles will be, just divide the mass calculated above for the molar mass:
C: 132.12/12 = 11 moles
H: 25.20/ 1 = 25 moles
S: 32.08/32 = 1 mol
O: 64.00/16 = 4 moles
So the molecular formula is C11H25SO4
Density = mass/volume
Therefore,
Density = 60g/30cm
Answer:
Coating a material with metal
(SInce the glasses will be coated with gold.)
You can use the equation ΔS(surr)=q(surr)/T or ΔS(surr)=-q(rxn)/T.
the two equations are equal since we know that the energy the system (reactoin) puts out just goes into the surroundings.
(In other words q(surr)=-q(rxn))
Using the equation, <span>ΔS(surr)=-(-283kJ/298K)=0.9497kJ/K or 949.7J/K
This answer makes sense since the reaction is exothermic which means it released energy into the system which usually causes the entropy to increase.
I hope that helps.</span>