To determine the empirical formula and the molecular formula of the compound, we assume a basis of the compound of 100 g. We do as follows:
Mass Moles
K 52.10 52.10/39.10 = 1.33 1.33/1.32 ≈ 1
C 15.8 15.8/12 = 1.32 1.32/1.32 ≈ 1
O 32.1 32.1 / 16 = 2.01 2.01/1.32 ≈ 1.5
The empirical formula would most likely be KCO.
The molecular formula would be K2C2O3.
Answer:
Chemical changes occur when a substance combines with another to form a new substance, called chemical synthesis or, alternatively, chemical decomposition into two or more different substances. These processes are called chemical reactions and, in general, are not reversible except by further chemical reactions.
Explanation:
To minimize the sharp pH shift that occurs when a strong acid is added to a solution, IT IS PRACTICAL TO ADD A WEAK BASE.
When a strong acid is added to a solution, it usually brings about a sharp change in the pH of the concerned solution. To avoid this, one can add a weak base to the solution first. The weak base will serves as a buffer for the strong acid and prevents the solution from experiencing sharp pH variations.
Answer:
The high system pressure and relatively large chlorine molecule size.
Explanation:
Having the expression of the ideal gas, and clearing the pressure, we have:
P = nRT/V
Meanwhile, for a non-ideal gas we have the following equation:
P = (nRT / V-nb) - n2a/V2
In this equation, high pressures and low temperatures have an influence on nonideal gases.
Therefore, at high pressures, the molecules in a gas are closer together and have high intermolecular forces. On the other hand, at low temperatures, the kinetic energy of a gas is reduced, so that the intermolecular attractive forces are also reduced.
Answer:
Sodium has 1 valence electron and bismuth has 83 electrons (5 valence electrons)
Explanation: