Answer is (1) Produces H+ in aqueous solution
Iridium-192 is used in cancer treatment, a small cylindrical piece of 192 Ir, 0.6 mm in diameter (0.3mm radius) and 3.5 mm long, is surgically inserted into the tumor. if the density of iridium is 22.42 g/cm3, how many iridium atoms are present in the sample?
Let us start by computing for the volume of the cylinder. V = π(r^2)*h where r and h are the radius and height of the cylinder, respectively. Let's convert all given dimensions to cm first. Radius = 0.03 cm, height is 0.35cm long.
V = π * (0.03cm)^2 * 0.35 cm = 9.896*10^-4 cm^3
Now we have the volume of 192-Ir, let's use the density provided to get it's mass, and once we have the mass let's use the molar mass to get the amount of moles. After getting the amount of moles, we use Avogadro's number to convert moles into number of atoms. See the calculation below and see if all units "cancel":
9.896*10^-4 cm^3 * (22.42 g/cm3) * (1 mole / 191.963 g) * (6.022x10^23 atoms /mole)
= 6.96 x 10^19 atoms of Ir-122 are present.
Answer:
The answer to your question is all the formulas in bold has the same empirical formula
Explanation:
Data
Empirical formula CH₂O
Process
To solve this problem factor the subscripts of each formula and compare the result with the empirical formula given.
a) C₂H₄O₂ factor 2 2(CH₂O)
b) C₃H₆O₃ factor 3 3(CH₂O)
c) CH₂O₂ this formula can not be simplified
d) C₅H₁₀O₅ factor 5 5(CH₂O)
e) C₆H₁₂O₆ factor 6 6(CH₂O)
D. Aquifers
Hope this helps chief.
1. 6.5*10^6
2. 5.94*10^-3
3. 1.2*10^2
4. 2.05*10^-2
5. 7.00*10^-1
Sorry if this is incorrect. To my understanding this is the correct answer.