N^2 should be the correct answer. Based on those numbers, it appears that the sum can be found by squaring the term n
Step-by-step explanation:
We have:
x - y = 43 , xy = 15
To find, the value of x^2+y^2x
2
+y
2
= ?
∴ x - y = 43
Squaring both sides, we get
(x - y)^2(x−y)
2
= 43^243
2
⇒ x^2+y^2x
2
+y
2
- 2xy = 1849
Using the algebraic identity,
(a - b)^2(a−b)
2
= a^2+b^2a
2
+b
2
- 2ab
⇒ x^2+y^2x
2
+y
2
= 1849 + 2xy
Put xy = 15, we get
x^2+y^2x
2
+y
2
= 1849 + 2(15)
⇒ x^2+y^2x
2
+y
2
= 1849 + 30
⇒ x^2+y^2x
2
+y
2
= 1879
∴ x^2+y^2x
2
+y
2
= 1879
I will send hint follow this hint then slove it .
thankyou
Answer:
n > p + 1 + 7k
Step-by-step explanation:
21k - 3n + 9 > 3p + 12
21k - 3n > 3p + 12 - 9
3n > 3p + 3
3n > 3p + 3 + 21k
n > (3p + 3 + 21k)/3
n > p + 1 + 7k
Answer:
2. <
Step-by-step explanation:
A units digit of 0 is less than a units digit of 1, so ...
0.9 < 1.1