Answer:
a. HCl.
b. 0.057 g.
c. 1.69 g.
d. 77 %.
Explanation:
Hello!
In this case, since the reaction between magnesium and hydrochloric acid is:

Whereas there is 1:2 mole ratio between them.
a) Here, we can identify the limiting reactant as that yielded the fewest moles of hydrogen gas product via the 1:1 and 2:1 mole ratios:

Thus, since hydrochloric yields fewer moles of hydrogen than magnesium, we realize it is the limiting reactant.
b) Here, we use the molar mass of gaseous hydrogen (2.02 g/mol) to compute the mass:

c) Here, we compute the mass of magnesium associated with the yielded 0.0248 moles of hydrogen:

Thus, the mass of excess magnesium turns out:

d) Finally, we compute the percent yield, considering 0.044 g is the actual yield and 0.057 g the theoretical yield:

Best regards!
yes substances Do react by mass
Answer:
See explanation
Explanation:
The question is incomplete because the image of the alcohol is missing. However, I will try give you a general picture of the reaction known as hydroboration of alkenes.
This reaction occurs in two steps. In the first step, -BH2 and H add to the same face of the double bond (syn addition).
In the second step, alkaline hydrogen peroxide is added and the alcohol is formed.
Note that the BH2 and H adds to the two atoms of the double bond. The final product of the reaction appears as if water was added to the original alkene following an anti-Markovnikov mechanism.
Steric hindrance is known to play a major role in this reaction as good yield of the anti-Markovnikov like product is obtained with alkenes having one of the carbon atoms of the double bond significantly hindered.