I’m assuming you mean barium nitrite, Ba(NO2)2.
First convert grams of Ba(NO2)2 to moles using the molar mass of Ba(NO2)2. Then use the mole ratio of 4 moles of oxygen per 1 mole of Ba(NO2)2 to convert to moles of oxygen. Then use the molar mass of oxygen to convert to grams of oxygen.
45.7 g Ba(NO2)2 • 1 mol Ba(NO2)2 / 229.35 g Ba(NO2)2 • 4 mol O / 1 mol Ba(NO2)2 • 16.0 g O / 1 mol O = 12.8 g oxygen
Answer:
0.005 mol
Explanation:
Moles is denoted by given mass divided by the molecular mass ,
Hence ,
n = w / m
n = moles ,
w = given mass ,
m = molecular mass .
From the question ,
w = given mass of Gold = 1.05 g ,
m = molecular mass of Gold = 197 g/mol
<u>Hence , moles can be calculated as -</u>
n = w / m
= 1.05 g / 197 g/mol = 0.005 mol
DE = dH - PdV
<span>2 H2O(g) → 2 H2(g) + O2(g) </span>
<span>You can see that there are 2 moles of gas in the reactants and 3 moles of gas in the products. </span>
<span>1 moles of ideal gas occupies the same volume as 1 mole of any other ideal gas under the same conditions of temp and pressure. </span>
<span>Since it is done under constant temp and pressure that means the volume change will be equal to the volume of 1 mole of gas </span>
<span>2 moles reacts to form 3 moles </span>
<span>The gas equation is </span>
<span>PV = nRT </span>
<span>P = pressure </span>
<span>V = volume (unknown) </span>
<span>n = moles (1) </span>
<span>R = gas constant = 8.314 J K^-1 mol^-1 </span>
<span>- the gas constant is different for different units of temp and pressure (see wikki link) in this case temp and pressure are constant, and we want to put the result in an equation that has Joules in it, so we select 8.314 JK^-1mol^-1) </span>
<span>T = temp in Kelvin (kelvin = deg C + 273.15 </span>
<span>So T = 403.15 K </span>
<span>Now, you can see that PV is on one side of the equation, and we are looking to put PdV in our dE equation. So we can say </span>
<span>dE = dH -dnRT (because PV = nRT) </span>
<span>Also, since the gas constant is in the unit of Joules, we need to convert dH to Joules </span>
<span>dH = 483.6 kJ/mol = 483600 Joules/mol </span>
<span>dE = 483600 J/mol - (1.0 mol x 8.314 J mol^-1K-1 x 403.15 K) </span>
<span>dE = 483600 J/mol - 3351.77 J </span>
<span>dE = 480248.23 J/mol </span>
<span>dE = 480.2 kJ/mol </span>
Explanation:
Number of moles(n)=Number of atoms(N)/Avogadro's constant.
Avogadro's constant=6.02×10²³
so we have
n=9.05×10²³/6.02×10²³
n=1.0503moles.
n=mass/molar mass
1.0503=mass/28
mass=1.0503×28
mass=29.4084g
Answer:
See below.
Step-by-step explanation:
Ethers react with HI at high temperature to produce an alky halide and an alcohol.
R-OR' + HI ⟶ R-I + H-OR'
<em>Benzylic ethers</em> react by an Sₙ1 mechanism by forming the stable benzyl cation.
- PhCH₂-OR + HI ⟶ PhCH₂-O⁺(H)R + I⁻ Protonation of the ether
- PhCH₂-O⁺(H)R ⟶ PhCH₂⁺ + HOR Sₙ1 ionization of oxonium ion
- PhCH₂⁺ + I⁻ ⟶ PhCH₂-I Nucleophilic attack by I⁻
If there is excess HI, the alcohol formed in Step 2 is also converted to an alkyl iodide:
ROH +HI ⟶ R-I + H-OH
Thus, benzyl ethyl ether reacts to form benzyl iodide (a) and ethanol (b).
The ethanol reacts with excess HI in an Sₙ2 reaction to form ethyl iodide (c).