Answer:
Explanation:
Salt water intrusion can cause the <u><em>fresh</em></u> water in wells to become contaminated with<u><em> salt</em></u>water.
Answer:
Explanation:
see answer below in the attached file.
Explanation:
Na represents the neutral element; Sodium. Because of it's atomic number of 11, It has 11 electrons.
Na+ on the other hand represents a cation. The sodium ion has lost an electron, hence the total number of electrons it has = 10.
The K and L shells each have maximum number of electrons they can accommodate. This is given by the formular; 2n^2
K shell = 2 (1)^2 = 2 electrons
L shell = 2 (2)^2 = 8 electrons
Seeing as Na+ has 10 electrons, It completely filled the K and L shells ( 2 + 8 = 10 )
Answer:
FALSE
Explanation:
Assuming that the gas is ideal
Therefore the gas obeys the ideal gas equation
<h3>Ideal gas equation is </h3><h3>P × V = n × R × T</h3>
where
P is the pressure exerted by the gas
V is the volume occupied by the gas
n is the number of moles of the gas
R is the ideal gas constant
T is the temperature of the gas
Here volume of the gas will be the volume of the container
Given the volume of the container and number of moles of the gas are constant
As R will also be constant, the pressure of the gas will be directly proportional to the temperature of the gas
P ∝ T
∴ Pressure will be directly proportional to the temperature
Answer:
The correct answer is 0.047 mol/L
Explanation:
The atmospheric air is a mixture of gases. We can assume an ideal behavior of the gas and use the ideal gas equation:
PV= nRT
where P is the pressure, V is the volume, n is the number of moles, R is a constant (0.082 L.atm/K.mol) and T is the temperature in K.
We have to first convert the pressure from Torr to atm:
760 Torr= 1 atm
⇒ 718 Torr x 1 atm/760 Torr = 0.945 atm
Then, we convert the temperature from ºC to K:
0ºC = 273 K
⇒ -29ºC+273= 244 K
Finally, we introduce the data in the equation and calculate de densitiy, which is the moles per liters of gas (n/V):
PV = nRT
n/V= P/RT
n/V = (0.945 atm)/(0.082 L.atm/K.mol x 244 K) = 0.047 mol/L