You have to balance out those forces and apply the same amount of equal and opposite force to it. I hope I helped ^^
Answer:
3.33 M
Explanation:
It seems your question is incomplete, however, that same fragment has been found somewhere else in the web:
" <em>A chemist prepares a solution of silver nitrate (AgNO3) by measuring out 85.g of silver nitrate into a 150.mL volumetric flask and filling the flask to the mark with water.</em>
<em>Calculate the concentration in mol/L of the chemist's silver nitrate solution. Be sure your answer has the correct number of significant digits.</em> "
In this case, first we <u>calculate the moles of AgNO₃</u>, using its molecular weight:
- 85.0 g AgNO₃ ÷ 169.87 g/mol = 0.500 mol AgNO₃
Then we<u> convert the 150 mL of the volumetric flask into L</u>:
Finally we <u>divide the moles by the volume</u>:
- 0.500 mol AgNO₃ / 0.150 L = 3.33 M
Answer:
b. unsaturated
.
Explanation:
Hello there!
In this case, according to the given information, it turns out necessary for us to bear to mind the definition of each type of solution:
- Supersaturated solution: comprises a large amount of solute at a temperature at which it will be able to crystalize upon standing.
- Unsaturated solution: is a solution in which a solvent is able to dissolve any more solute at a given temperature.
- Saturated solution can be defined as a solution in which a solvent is not capable of dissolving any more solute at a given temperature.
In such a way, since 20 grams of the solute are less than the solubility, we infer this is b. unsaturated, as 33.3 grams of solute can be further added to the 100 grams of water.
Regards!
I believe the compound is Phosphorus pentoxide