The standard form for the equation of a circle is :
 (x−h)^2+(y−k)^2=r2 ----------- EQ(1)
 where handk are the x and y coordinates of the center of the circle and r is the radius.
 The center of the circle is the midpoint of the diameter.
 So the midpoint of the diameter with endpoints at (7,-4)and(1,-10) is :
 ((7+(1))/2,(-4+(-10))/2)=(4,-7)
 So the point (4,-7) is the center of the circle.
  Now, use the distance formula to find the radius of the circle:
  r^2=(7−(4))^2+(-4−(-7))^2=9+9=18
 ⇒r=√18
 Subtituting h=4, k=-7 and r=√18 into EQ(1) gives :
 (x-4)^2+(y+7)^2=18