It is the acceleration of an object in free fall
Explanation:
When an object is in free fall, it is subjected only to one force: the force of gravity, which pulls the object downward, with a magnitude (near the Earth's surface) which is given by

where
m is the mass of the object
is the acceleration due to gravity
We can apply Newton's second law to the object in free fall:

where
F is the net force on the object
a is the acceleration of the object
m is the mass
However, since there is only the force of gravity acting on the object, the net force is equal to the force of gravity: so we can equate the two equations, obtaining that

Which means that the acceleration of an object in free fall (acted upon the force of gravity only) is equal to the acceleration due to gravity,
.
Learn more about gravity:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly
Answer:
0.30581
0.24464
Explanation:
= Coefficient of static friction
= Coefficient of kinetic friction
= 75 N
= 60 N
Normal force

Frictional force

The coefficient of static friction is 0.30581
Kinetic force

The coefficient of kinetic friction is 0.24464
Compounds
Explanation:
Reactive elements such as alkali metals and halogens are found in nature only as compounds. Such elements are too unstable to remain as stable atoms, therefore they readily combine and form compounds.
- Compounds are formed when two atoms combines together to share electrons.
- They either lose, gain, or share electrons between themselves.
- In the end, they end up becoming more stable.
- This is the reason why atoms combine.
- Unstable elements are very reactive especially alkali metals and halogens.
- On their own, they are unstable and prefers to bond with other atoms in order to gain a measure of stability.
- This is why they are found in combined state in nature.
Learn more:
Compound brainly.com/question/10585691
Noble gases brainly.com/question/1781595
#learnwithBrainly
Answer:
the intensity of the sun on the other planet is a hundredth of that of the intensity of the sun on earth.
That is,
Intensity of sun on the other planet, Iₒ = (intensity of the sun on earth, Iₑ)/100
Explanation:
Let the intensity of light be represented by I
Let the distance of the star be d
I ∝ (1/d²)
I = k/d²
For the earth,
Iₑ = k/dₑ²
k = Iₑdₑ²
For the other planet, let intensity be Iₒ and distance be dₒ
Iₒ = k/dₒ²
But dₒ = 10dₑ
Iₒ = k/(10dₑ)²
Iₒ = k/100dₑ²
But k = Iₑdₑ²
Iₒ = Iₑdₑ²/100dₑ² = Iₑ/100
Iₒ = Iₑ/100
Meaning the intensity of the sun on the other planet is a hundredth of that of the intensity on earth.
Answer: True
Explanation: When light is reflected off lets say a mirror it is bent and changes direction to bounce off of another wall or object. For example if you take a flash light and shine it into a mirror the light reflects into a different direction your welcome