Answer:
a) V(t) = Ldi(t)/dt
b) If current is constant, V = 0
Explanation:
a) The voltage, V(t), across an inductor is proportional to the rate of change of the current flowing across it with time.
If V represents the Voltage across the inductor
and i(t) represents the current across the inductor in time, t.
V(t) ∝ di(t)/dt
Introducing a proportionality constant,L, which is the inductance of the inductor
The general equation describing the voltage across the inductor of inductance, L, as a function of time when a current flows through it is shown below.
V(t) = Ldi(t)/dt ..................................................(1)
b) If the current flowing through the inductor is constant i.e. does not vary with time
di(t)/dt = 0 and hence the general equation (1) above becomes
V(t) = 0
Answer:
option B is correct. Fracture will definitely not occur
Explanation:
The formula for fracture toughness is given by;
K_ic = σY√πa
Where,
σ is the applied stress
Y is the dimensionless parameter
a is the crack length.
Let's make σ the subject
So,
σ = [K_ic/Y√πa]
Plugging in the relevant values;
σ = [50/(1.1√π*(0.5 x 10^(-3))]
σ = 1147 MPa
Thus, the material can withstand a stress of 1147 MPa
So, if tensile stress of 1000 MPa is applied, fracture will not occur because the material can withstand a higher stress of 1147 MPa before it fractures. So option B is correct.
Answer: 1. sadly yes, some people are treated unfairly for crimes people yet have commited. 2. no 3. yes
Explanation:
i did this last year
Answer:
Q' = 8 KW.h
Q'=28800 KJ
Explanation:
Given that
Heat Q= 4 KW
time ,t = 2 hours
The amount of energy used in KWh given as
Q ' = Q x t
Q' = 4 x 2 KW.h
Q' = 8 KW.h
We know that
1 h = 60 min = 60 x 60 s = 3600 s
We know that W = 1 J/s
The amount of energy used in KJ given as
Q' = 8 x 3600 = 28800 KJ
Therefore
Q' = 8 KW.h
Q'=28800 KJ