1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tema [17]
3 years ago
7

Who is the first president of China ?

Physics
2 answers:
Kitty [74]3 years ago
6 0

The President is Xi Jinping

Contact [7]3 years ago
5 0

President  Xi Jinping is the first president of China

You might be interested in
When an object (like a ball) falls, some of its___ energy changes to ___ energy, due to the law of conservation of energy
Alinara [238K]

Answer:

potential, kinetic

Explanation:

pls give brainliest :p

8 0
2 years ago
A solenoid with 35 turns per centimeter carries a current I. An electron moves within the solenoid in a circle that has a radius
castortr0y [4]

Answer:

The current of the solenoid is 0.0129 A.

Explanation:

The movement of the electron within the solenoid in a circle is produced by equaling the magnetic force and the centripetal force, as follows:

F_{B} = F_{c}

e*v \mu_{0}*n*I = \frac{m*v^{2}}{r}

I = \frac{m*v}{e* \mu_{0}*n*r}

Where:

I: is the current

m: is the electron's mass = 9.1x10⁺³¹ kg

v: is the electron's speed = 3.0x10⁵ m/s

μ₀: is the permeability magnetic = 4πx10⁻⁷ T.m/A

n: is the number of turns per unit length = 35/cm

r: is the radius of the circle = 3.0 cm

e: is the electron's charge = 1.6x10⁻¹⁹ C  

I = \frac{m*v}{e*\mu_{0}*n*r} = \frac{9.1 \cdot 10^{-31} kg*3.0 \cdot 10^{5} m/s}{1.6 \cdot 10^{-19} C*4\pi \cdot 10^{-7} T.m/A*3500/m*0.03 m} = 0.0129 A  

Therefore, the current of the solenoid is 0.0129 A.

I hope it helps you!

3 0
3 years ago
A wheel accelerates from rest to 34.7 rad/s at a rate of 47.0 rad/s^2. Through what angle (in radians) did the wheel turn while
dem82 [27]

12.8 rad

Explanation:

The angular displacement \theta through which the wheel turned can be determined from the equation below:

\omega^2 = \omega_0^2 + 2\alpha\theta (1)

where

\omega_0 = 0

\omega = 34.7\:\text{rad/s}

\alpha = 47.0\:\text{rad/s}^2

Using these values, we can solve for \theta from Eqn(1) as follows:

2\alpha\theta = \omega^2 - \omega_0^2

or

\theta = \dfrac{\omega^2 - \omega_0^2}{2\alpha}

\:\:\:\:= \dfrac{(34.7\:\text{rad/s})^2 - 0}{2(47.0\:\text{rad/s}^2)}

\:\:\:\:= 12.8\:\text{rad}

7 0
2 years ago
the scores of players on a golf team are shown in the table. the teams combined score was 0 what was travis's score?
Alona [7]

Answer:

what table?

Explanation:

3 0
3 years ago
Read 2 more answers
A concert loudspeaker suspended high off the ground emits 34 W of sound power. A small microphone with a 1.0 cm2 area is 44 m fr
rjkz [21]

Answer:

<u>Part A</u>

I = 1.4 mW/m²  

<u>Part B</u>

β = 91.46 dB

Explanation:

<u>Part A</u>

Sound intensity is the power per unit area of sound waves in a direction perpendicular to that area. Sound intensity is also called acoustic intensity.

For a spherical sound wave, the sound intensity is given by;

                                            I = \frac{P}{A}

                                            I = \frac{P}{4\pi r^{2}}

Where;

P is the source of power in watts (W)

I is the intensity of the sound in watt per square meter (W/m2)

r is the distance r away

Given:

P = 34 W,

A = 1.0 cm²

r = 44 m

The sound intensity at the position of the microphone is calculated to be;

                                     I = \frac{34}{4\pi (44)^{2}}

                                     I = \frac{34}{4\pi (44)^{2}}

                                     I = 0.0013975 W/m²

                                 ≈  I = 0.0014 W/m² = 1.4 × 10⁻³ W/m²

                                     I = 1.4 mW/m²

The sound intensity at the position of the microphone is 1.4 mW/m².

<u>Part B</u>

Sound intensity level or acoustic intensity level is the level of the intensity of a sound relative to a reference value.  It is a a logarithmic quantity. It is denoted by β and expressed in nepers, bels, or decibels.

Sound intensity level is calculated as;  

                                    β = 10log_{10}\frac{I}{I_{0}}  dB

Where,

β is the Sound intensity level in decibels (dB)

I is the sound intensity;

I₀ is the reference sound intensity;

By pluging-in, I₀ is 1.0 × 10⁻¹² W/m²

           ∴        β = 10log_{10}\frac{1.4 * 10^{-3} W/m^{2}}{1.0 * 10^{-12} W/m^{2}}

                      β = 10log_{10} (1.4 * 10^{9})

                      β = 91.46 dB

The sound intensity level at the position of the microphone is 91.46 dB.                

4 0
3 years ago
Other questions:
  • A certain lightbulb has a tungsten filament with a resistance of 20.3 Ω when at 20.0°C and 135 Ω when hot. Assume the resistivit
    6·1 answer
  • A force of 100N was necessary to lift a rock. A total of 150J of work was done. How far was the rock lifted?
    6·1 answer
  • A rocket is launched straight up from the earth's surface at a speed of 1.80×104 m/s .part awhat is its speed when it is very fa
    10·2 answers
  • In a perfectly inelastic one-dimensional collision between two objects, what condition alone is necessary so that the final kine
    14·2 answers
  • If the equation on the board had shown 3 atoms of carbon on the reactants side, how many atoms of carbon would need to be repres
    10·2 answers
  • 0.55 kg mouse moving E at 60m s or a 900 kg elephant moving E at 0.03m Which has the most momentum?
    14·1 answer
  • Investigating arson can be a very complicated and complex job, as you learned in the unit! It is also generally a time sensitive
    15·1 answer
  • A) Khi nào một vật được coi là chuyển động ? Cho ví dụ ?
    5·1 answer
  • a race car is traveling at a speed of 80.0m/s on a circular race track of radius 450m what is the centripetal acceleration
    10·1 answer
  • Correctly label the following structures surrounding the small intestine. Stomach Appendix lleum Cecum Jejunum Ascending colon
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!