The total kinetic and potential energies
Answer:
0.426 L
Explanation:
Boyles law is expressed as p1v1=p2v2 where
P1 is first pressure, v1 is first volume
P2 is second pressure, v2 is second volume.
Given information
P1=96 kPa, v1=0.45 l
P2=101.3 kpa
Unknown is v2
Making v2 the subject from Boyle's law

Substituting the given values then

Therefore, the volume is approximately 0.426 L
Mass of gold m₁ = 47 g
Initial temperature of gold T₁ = 99 C
Specific heat of gold C₁ = 0.129 J/gC
final temperature T₂ = 38 C
Heat needed by the gold to cool down
Q =m₁ * C₁* ( T₁ - T₂)
Q = (47)(0.129)(99-38)
Q = 369.843 J
This heat will be given by the water
we need to find out mass of water m₂
and initial temperature of water is T₃ = 25 C
Specific heat of water C₂ = 4.184 J/gC
Q = m₂*C₂*(T₂ - T₃)
369.843 = m₂(4.184)(38-25)
m₂ = 6.8 g
Explanation:
speed of wave
v = wavelength x frequency
since frequency is f = 1/Period then
v = wavelength : Period
v = 10 cm/ 0.2 s = 50 cm/s
v = 0.5 m/s