Answer:
I think it's 2 the photo is hard to tell what they are exactly talking about.
Answer:
the object's mass is 50 kg
Explanation:
We use Newton's second law to solve for the mass:
F = m * a , then m = F / a
In our case, the acceleration is the gravitational acceleration on the planet, and the force is the weight of the object on the planet. So we get:
m = w / a = 650 N / 13 m/s^2 = 50 kg
Then, the object's mass is 50 kg.
Answer: the minimal force that you need to apply to move the bureau is F = 198.45N
Explanation:
If you want to move an object, you need to apply a force that is bigger than the force of the statical friction.
The force of statical friction can be written as.
Ff = k*N
where k is the coefficient of static friction, in this case, k = 0.45, and N is the normal force between the object and the surface.
In this case, the normal force is the weight of the bedroom bureau, this is:
N = m*g = 45kg*9.8m/s^2 = 441N
Then the force is:
Fr = 0.45*441N = 198.45N
This means that the minimal force that you need to apply to move the bureau is F = 198.45N
and after this point, the force of friction will work wit the kinetic coefficient of friction, that usually is smaller than the statical one.
Answer:
2 rad/s
Explanation:
For a rotating object, the linear velocity is given by

where
is the angular velocity and
is the radius.

The edge has a linear velocity of 10 m/s and the radius at the edge is 5 m.

photons and convection - density differences makes bubbles of hot stuff float up. pretty sure