1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yaroslaw [1]
3 years ago
14

Which resonance form is likely to contribute most to the correct structure of n2o?

Physics
1 answer:
Debora [2.8K]3 years ago
3 0

Answer:

Explanation:

- The atoms combine to form molecules and attain stability by completing their octet. The formation of compound can take place either by transfer of electron from one atom to other or by sharing of electrons between them.

- Resonance structure of a molecule is of two or more forms in which the distribution of electrons around the structure is different but the chemical connectivity is same.

- The total number of valence electrons VE in (N N O) is :

                                 VE = 2(5) + 6 = 16 electrons.

- Among the molecule, the electrons are distributed in atom in such a way that formation of triple bond will take place between two nitrogen atoms and a single bond will form between nitrogen and oxygen atom.

- The formal charge FC on each atom is determined as:

                                  FC = VE - NBE - BE/2

Where,

            NBE: Non-Bonding Electrons

            BE : Bonding Electrons.

- The formal charge on each atom is: the nitrogen atom in center will possess 1+ formal charge and oxygen will possess 1- charge (oxygen is electronegative atom). Thus, results in formation of neutral molecule.

- The structure of (N N O) is shown in attachment.

- The resonance form which is likely to contribute most to the correct structure of (N_2 O) is:

- Structure for (N N O)  showing one lone-pair of electrons on the terminal nitrogen atom, a triple bond between the two nitrogen atoms, a single bond between nitrogen and oxygen, and three lone-pairs of electrons on the terminal oxygen atom.

               

You might be interested in
A car is traveling at 15 m/sm/s . Part A How fast would the car need to go to double its kinetic energy
GREYUIT [131]

Answer:

21.21 m/s

Explanation:

Let KE₁ represent the initial kinetic energy.

Let v₁ represent the initial velocity.

Let KE₂ represent the final kinetic energy.

Let v₂ represent the final velocity.

Next, the data obtained from the question:

Initial velocity (v₁) = 15 m/s

Initial kinetic Energy (KE₁) = E

Final final energy (KE₂) = double the initial kinetic energy = 2E

Final velocity (v₂) =?

Thus, the velocity (v₂) with which the car we travel in order to double it's kinetic energy can be obtained as follow:

KE = ½mv²

NOTE: Mass (m) = constant (since we are considering the same car)

KE₁/v₁² = KE₂/v₂²

E /15² = 2E/v₂²

E/225 = 2E/v₂²

Cross multiply

E × v₂² = 225 × 2E

E × v₂² = 450E

Divide both side by E

v₂² = 450E /E

v₂² = 450

Take the square root of both side.

v₂ = √450

v₂ = 21.21 m/s

Therefore, the car will travel at 21.21 m/s in order to double it's kinetic energy.

8 0
2 years ago
How do the principles of convection, conduction, and radiation explain how the water in the saucepan gets hot?
RSB [31]
<span>Heat comes from stove flame to the sauce pan by radiation through infrared energy, heat conducts the metal of the sauce pan; Convection brings cool water to the hot surface at the bottom of the hot sauce pan until all or most of the water is hot enough to boil.</span>
3 0
3 years ago
Which term refers to energy derived from heat inside the earth
tino4ka555 [31]
I think the answer is Geothermal energy. 
3 0
3 years ago
A student is swimming south applying a force of 256 N. The water exerts a westward force of 104 N. If the student has a mass of
grigory [225]

Answer:

a=2.9\ m/sec^2

Explanation:

<u>Net Forces and Acceleration</u>

The second Newton's Law relates the net force F_r acting on an object of mass m with the acceleration a it gets. Both the net force and the acceleration are vector and have the same direction because they are proportional to each other.

\vec F_r=m\vec a

According to the information given in the question, two forces are acting on the swimming student: One of 256 N pointing to the south and other to the west of 104 N. Since those forces are not aligned, we must add them like vectors as shown in the figure below.

The magnitude of the resulting force F_r is computed as the hypotenuse of a right triangle

|F_r|=\sqrt{256^2+104^2}

|F_r|=276.32\ Nw

The acceleration can be obtained from the formula

F_r=ma

Note we are using only magnitudes here

\displaystyle a=\frac{F_r}{m}

\displaystyle a=\frac{276.32Nw}{95.3Kg}

\boxed{a=2.9\ m/sec^2}

7 0
3 years ago
A rock is dropped from a height of 3.4 m. How much time does it take to hit
siniylev [52]
Answer: 33.32 s

Explanation: gravity =9.8m/s2 which means that 3.4mx9.8m/s2=33.32s

I hope this helped ! Sorry if it’s wrong :)
6 0
3 years ago
Other questions:
  • Heat from Earth's interior causes convection currents in Earth's _________.
    12·2 answers
  • What do lungs do in your body ?
    8·2 answers
  • Why does light of a certain frequency need to be used to produce a current in the photoelectric effect?
    5·1 answer
  • You are working as an expert witness for an attorney who is suing a shipping company. The company operates ships that carry crud
    8·1 answer
  • An object ends up at a final position of x=-55.25 meters after a displacement of -189.34 meters after a displacement of -189.34
    9·1 answer
  • Newton's third law is sometimes summarized as "for every action, there's an equal opposite reaction" but when you jump from eart
    15·1 answer
  • Ure
    5·1 answer
  • During the motion of the slinky in a transverse wave, what do the particles of the slinky coil do?
    5·1 answer
  • A tennis player hit a .057-kg ball with a force of 40 N. The duration of the force was .05 s.
    12·1 answer
  • Why do we use days and hours instead of hours?<br>​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!