Answer:

Explanation:
The acceleration of an object is the rate of change of velocity of the object.
Mathematically, it is calculated as:

where
u is the initial velocity
v is the final velocity
t is the time taken for the velocity to change from u to v
Acceleration is a vector, so it is important to also take into account the direction of the velocity.
For the particle in this problem, we have:
u = +48 m/s is the initial velocity (positive direction)
v = -92 m/s is the final velocity (negative direction)
t = 4.5 s is the time interval
Therefore, the average acceleration is

 
        
             
        
        
        
Answer:
O The particles of the medium move more slowly and there are fewer chances to transfer energy.
Explanation:
Various media are made up of particles. These particles are in constant motion according to the kinetic theory of matter. Recall that temperature has been defined as the average kinetic energy of the particles in a medium. Hence, for any given medium, the velocity of particle motion increases or decreases linearly with temperature.
The speed of particles in any medium increases or decreases as the temperature of the medium increases or decreases as emphasised above. Hence, at low temperature, the velocity of waves set up by the motion of particles in a medium decreases and transfer the wave energy to neighbouring particles occurs more slowly than at high temperatures.
 
        
             
        
        
        
Answer:
- It can be infer that it has a lower frequency.
<em>In the case of electromagnetic waves.</em>
- A short wavelength means a lower energy,
Explanation:
The wavelength is the distance between two consecutive crests or valleys while the frequency is the number of crests that pass for a specific point in an interval of time.
For example, a person makes laundry once a weak.
In this example, the event is represented by the laundry and the interval of time is once a weak
The velocity of a wave is defined as:
 (1)
  (1)
Where  is the frequency and
 is the frequency and  is the wavelenth
 is the wavelenth
 (2)
  (2)
Notice from equation 2 that the wavelength is inversely proportional to the frequency (when the wavelength increases the frequency decreases).
In the case of electromagnetic waves, a short wavelength means a lower energy, as it can be seen in equation 4 (inversely proportional).
 (3)
  (3)
 (4)
  (4)