8 moles of water on the right side.
An oxidation-reduction or redox reaction is a reaction that involves the transfer of electrons between chemical items (the atoms, ions, or molecules involved in the reaction).
Redox reactions: the burning of fuels, the corrosion of metals, and even the processes of photosynthesis and cellular respiration involve oxidation and reduction.
Step 1:
MnO4- ----> Mn2+
2Cl- ------> Cl2
Step 2:
MnO4- --> Mn2+ + 4H2O
2Cl- -----> Cl2
Step 3:
8H+ + MnO4- ------> Mn2+ + 4H2O
2Cl- ----->Cl2
Step 4:
8H+ + MnO4- +5e- ------>Mn2+ + 4H2O
2Cl- ----> Cl2+ 2e-
Step 5:
16 H+ +2 MnO4- +10Cl- ----->2 Mn2+ + 8H2O+5Cl2
This is the balanced equation in an acidic medium.
That is 8, right side.
To know more about redox reaction follow the link:
https://brainly.in/question/9854479
#SPJ4
Bonds are forces of attractions between atoms formed by the transfer of electrons or sharing of electrons. Metallic bond is a type bond that exist in metallic structures where the atoms of the metals attracts the sea of electrons in the structure.It is these metallic bonds that results to the malleability , ductility and conductivity of metals because in that the sea of electrons makes them conduct electricity. In addition the atoms of metals in the structure are ions which can slide past each other in the sea of electrons.
While the number nuclear protons as given is 34, and therefore we deal with the element selenium, there are 2 more electrons than protons, and therefore this species has an overall
2
−
charge.
We represent this selenide ion as
S
e
2
−
. Do I win 5 pounds?
Z= 34, therefore the atom is selenium
Answer:
0.184 atm
Explanation:
The ideal gas equation is:
PV = nRT
Where<em> P</em> is the pressure, <em>V</em> is the volume, <em>n</em> is the number of moles, <em>R</em> the constant of the gases, and <em>T</em> the temperature.
So, the sample of N₂O₃ will only have its temperature doubled, with the same volume and the same number of moles. Temperature and pressure are directly related, so if one increases the other also increases, then the pressure must double to 0.092 atm.
The decomposition occurs:
N₂O₃(g) ⇄ NO₂(g) + NO(g)
So, 1 mol of N₂O₃ will produce 2 moles of the products (1 of each), the <em>n </em>will double. The volume and the temperature are now constants, and the pressure is directly proportional to the number of moles, so the pressure will double to 0.184 atm.