Answer:
6.31g/mol
Explanation:
Using the ideal gas equation;
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (K)
Mole (n) = mass (m)/molar mass (Mm)
* Mm = m/n
Also, density (p) = mass (m) ÷ volume (V)
PV = nRT
Since n = M/Mm
PV = M/Mm. RT
PV × Mm = m × RT
Divide both sides by V
P × Mm = m/V × RT
Since p = m/V
P × Mm = p × RT
Mm = p × RT/P
Mm = 0.249 × 0.0821 × 293/0.95
Mm = 5.989 ÷ 0.95
Mm = 6.31g/mol
Answer:
Explanation:
a ) Total mixture = 4.656 g
Sand recovered = 2.775 g
percent composition of sand in the mixture
= (2.775 g / 4.656 g ) x 100
= 59.6 % .
b )
Total of sand and salt recovered = 2.775 g + .852 g = 3.627 g .
Total mixture = 4.656 g
percent recovery = (3.627 / 4.656 ) x 100
= 77.9 % .
<h3>
Answer:</h3>
True, the reaction given is an example of a synthesis reaction
<h3>
Explanation:</h3>
- Synthesis reactions are reactions where two or more substances combine to form a single compound.
- The reaction 2NO(g) + O₂(g) → 2NO₂(g) is an example of a synthesis reaction.
Other types of chemical reactions may include;
- Decomposition reaction in which a compound is broken down into smaller compounds or individual elements.
- Replacement reaction where reactive elements replace other less reactive elements in their salts.
- Precipitation reactions in which soluble salts reacts to form a precipitate and a soluble salt as a result of exchange of anions and cations.
Answer:
119.5 J
Explanation:
First we <u>calculate the temperature difference</u>:
- ΔT = 100 °C - 50 °C = 50 °C
Then we can <u>calculate the heat released</u> by using the following formula:
Where q is the heat, Cp is the specific heat, ΔT is the temperature difference and m is the mass.
We <u>input the data</u>:
- q = 0.239 J/g°C * 50 °C * 10.0 g