We want to use this primary leaving group on this primary starting material because it will give us a greater yield and say, if we were to use a secondary reagent in place of this primary.
Now we've moved on from our fundamentals. So we have our starting material and we have That's our beautiful sec futile ether. So now that we've written out are starting material, we can take a thing about where exactly some reactivity may happen. So, for example, could start out with an alcohol that looks as the following. This is a secondary alcohol you can see. So now we need to take a look at some of alcohol.
So now we need to think about our alcohol. Hey, light again. Well, we'll have a hey light. That's a very good leaving group. So we need alcohol. So for example, so now we have a primary structure here, So this will undergo and s and two reaction due to the lacking of hysteric hindrance. Formal negative charge attacks that electrical it carbon bro.
Learn more about Alcohol here-
brainly.com/question/14229343
#SPJ4
The correct answers are ,
A) C
B) N
C) Ti
D) Zn
E) Fe
F) Phosphorus
G)Calcium
H) Helium
I) Lead
J) Silver
<h3>How are elements named?</h3>
Elements have been given names based on a variety of factors, <u>including their characteristics</u>, the compound or ore from which they were extracted, the method by which they were found or acquired, mythical characters, locations, and well-known individuals. Some components have <u>names that are descriptive and are based on one of their attributes.</u>
The International Union of Pure and Applied Chemistry chooses the official element names and symbols (IUPAC). However, different nations frequently use similar names and symbols for elements. Official names and symbols for elements are not given until after their discovery has been confirmed. The discoverer may then suggest a name and a symbol.
There are name standards for several element groupings. Names of halogens end in -ine. All noble gas names, save helium, end in -on. The names of most other elements finish with -ium.
To learn more about elements:
brainly.com/question/14347616
#SPJ4
Answer:
The Relative Formula Mass of Fe(NO₃)₂ is 179.8524 grams
Explanation:
The Relative Formula Mass is the mass of one mole of a compound expressed in grams, obtained by adding together the Relative Atomic Masses, RAM, of the elements which makes the compound
The Relative Formula Mass of a compound is the same as its Relative Molecular Mass
The relative formula mass of Fe(NO₃)₂ is given as follows;
The relative atomic mass of Fe = 55.845 amu
The relative atomic mass of nitrogen, N = 14.0067 amu
The relative atomic mass of oxygen, O = 15.999 amu
Therefore, we have;
The formula mass of Fe(NO₃)₂ = (55.845 + 2×(14.0067 + 3×15.999)) amu = 179.8524 amu
The Relative Formula Mass of Fe(NO₃)₂ = 179.8524 grams.
Larges of flowing ice called glaciers are typically found near Earth's poles and other cold regions.