Answer:
If an object is moving at a constant speed in a constant rightward direction, then the acceleration is zero and the net force must be zero.
1) Write the balaced chemical equation:
H2 + 2O2 → 2H2O
2) Infere the molar ratios:
1 mol H2 : 2 mol of water
3) Make the calculus as the direct proportion relation:
[2 mol H2O] / [1 mol H2] * 7 mol H2 = 14 mol H2
As you see you produce the double number of moles of H2O than number of moles of H2 used.
Answer: 14 moles
Answer:
63.6%
Explanation:
The given compound is:
N₂O;
The problem here is to find the percent composition of nitrogen in the compound.
First find the molar mass of the compound:
Molar mass of N₂O = 2(14) + 16 = 44g/mol
So;
Percentage composition of Nitrogen =
x 100 = 63.6%
The answer is (B).
Hope this helps :).
Pb(NO₃)₂ ⇒limiting reactant
moles PbI₂ = 1.36 x 10⁻³
% yield = 87.72%
<h3>Further explanation</h3>
Given
Reaction(unbalanced)
Pb(NO₃)₂(s) + NaI(aq) → PbI₂(s) + NaNO₃(aq)
Required
- moles of PbI₂
- Limiting reactant
- % yield
Solution
Balanced equation :
Pb(NO₃)₂(s) + 2NaI(aq) → PbI₂(s) + 2NaNO₃(aq)
mol Pb(NO₃)₂ :
= 0.45 : 331 g/mol
= 1.36 x 10⁻³
mol NaI :
= 250 ml x 0.25 M
= 0.0625
Limiting reactant (mol : coefficient)
Pb(NO₃)₂ : 1.36 x 10⁻³ : 1 = 1.36 x 10⁻³
NaI : 0.0625 : 2 = 0.03125
Pb(NO₃)₂ ⇒limiting reactant(smaller ratio)
moles PbI₂ = moles Pb(NO₃)₂ = 1.36 x 10⁻³(mol ratio 1 : 1)
Mass of PbI₂ :
= mol x MW
= 1.36 x 10⁻³ x 461,01 g/mol
= 0.627 g
% yield = 0.55/0.627 x 100% = 87.72%