Answer: x<4
Given the inequality:

We want to solve the inequality for x.
First, distribute the bracket on the right side of the inequality.

Next, subtract 10x from both sides of the inequality.

Add 24 to both sides of the inequality.

Divide both sides of the inequality by 6.

The solution to the inequality is x<4.
Answer:
Three circular arcs of radius $5$ units bound the region shown. Arcs $AB$ and $AD$ are quarter-circles, and arc $BCD$ is a semicircle.
Step-by-step explanation:
From your equation, you can see that you have a difference of two cubes (aka two cubes being subtracted): 64, which is

, and

.
There is rule for the difference of two cubes:
The difference of two cubes is equal to the difference of the cube roots times a binomial, which is the sum of the squares of the roots plus the product of the roots.
That sounds pretty confusing, but it's much easier to understand when put mathematically. Let's say our two cubes are

and

. The difference of those two cubes is:

In our problem, a = 4 (since

= 64) and b = y (since

. Plug these values into the rule to find the factor of

:

-----
Answer:
Answer: yes
Step-by-step explanation:
Answer:
A sinusoidal model would be used
The kind of function that have consistency in the periodic rate of change is the Average rate of changes
Step-by-step explanation:
The type of model that would be used is sinusoidal model and this is because there is periodic change in the values given ( i.e the rate of changes given )
For percentage rate of changes :
starting from 0.9% there is an increase to 1.3% then a decrease to 1.1% and a further decrease to 1% before an increase to 1.3% and another decrease to 1%
For Average rate of changes:
starting from 2.9 there is a decrease to 2.4, then an increase to 3.7 and another decrease to 3.1 followed by an increase to 3.6 and a decrease back to 3.2
This relation ( sinusoidal model ) is best suited for a linear model because there is a periodic rate of change in the functions
The kind of function that have consistency in the period rate of change is the Average rate of changes