when heat gained = heat lost
when AL is lost heat and water gain heat
∴ (M*C*ΔT)AL = (M*C*ΔT) water
when M(Al) is the mass of Al= 225g
C(Al) is the specific heat of Al = 0.9
ΔT(Al) = (125.5 - Tf)
and Mw is mass of water = 500g
Cw is the specific heat of water = 4.81
ΔT = (Tf - 22.5)
so by substitution:
∴225* 0.9 * ( 125.5 - Tf) = 500 * 4.81 * (Tf-22.5)
∴Tf = 30.5 °C
Explanation:
Initial Pressure = 24 lb in-2
Initial Temperature = –5 o C = 268 K (Converting to kelvin temperature)
Final Pressure = ?
Final Temperature = 35 o C = 308 K (Converting to kelvin temperature)
No Change in Volume.
From Gay Lusaac's law; pressure of a given amount of gas held at constant volume is directly proportional to the Kelvin temperature.
P1T1 = P2T2
P2 = P1T1 / T2
P2 = 24 * 268 / 308 = 20.88 lb in-2
There would be a drop in pressure as the temperature increases. Appropriate measures should b taken by regularly gauging the pressure of the tire.
Answer:
Esters have lower boiling point than alcohols.
Explanation:
Esters are the fruity smelling compounds which are formed from carboxylic acid and alcohol with the removal of water.
The general formula for the ester is RCOOR' which is prepared from RCOOH acid and R'OH alcohol.
Ester can not form strong hydrogen bond as there is no hydrogen attached to the electronegative atom in the ester and thus cannot form hydrogen bonds with each other.<u> Due to this factor, the interactions within the molecules of the ester is lower than that of alcohols which exist in strong hydrogen bonding. As a result, ester can be easily boiled when compared to the alcohols and thus they have lower value of boiling points.</u>
Answer:
B₂
Explanation:
The limiting reactant is always a reactant. You can determine which reactant is limiting by identifying which has the smaller mole-to-mole ratio with the product. This ratio can be found via the coefficients of the balanced reaction.
4 A₂ + 3 B₂ ---> 6 AB
4 moles A₂
------------------ = mole-to-mole ratio A₂/AB
6 moles AB
3 moles B₂
------------------ = mole-to-mole ratio B₂/AB
6 moles AB
Since the mole-to-mole ratio between B₂ and AB is smaller, B₂ must be the limiting reactant.