Answer:
Light
Explanation:
The discovery of light from the other side of a black hole was predicted by Einstein's theory of general relativity. ... The research began with a slightly different aim of a more common light formed by a black hole: the corona which wraps around the outside of it, formed as material falls in.
Answer:
71 Ga has a naturally abundance of 36%
Explanation:
Step 1: Given data
Gallium has 2 naturally occurring isotopes: this means the abundance of the 2 isotopes together is 100 %. The atomic weight of Ga is 69.72 amu. This is the average of all the isotopes.
Since the average mass of 69.72 is closer to the mass of 69 Ga, this means 69 Ga will be more present than 71 Ga
Percentage 69 Ga> Percentage 71 Ga
<u>Step 2:</u> Calculate the abundance %
⇒Percentage of 71 Ga = X %
⇒Percentage of 69 Ga = 100 % - X %
The mass balance equation will be:
100*69.72 = x * 71 + (100 - x)*69
6972 = 71x + 6900 -69x
72 = 2x
x = 36 %
71 Ga has a naturally abundance of 36%
69 Ga has a naturally abundance of 64%
N = 3.2 moles, T = 50 + 273 = 323 K, P = 101.325 kPa, R = 8.314 L.kPa/K.mol
PV = nRT
V = nRT / P substituting.
V = (3.2 mole)(8.314 L.kPa/K.mol )(323 K) / (<span>101.325 kPa)
That is the answer, but it is not among the options you provided. Check your options properly.</span>
If iron has a density of 7.87g/cm³ and a mass of 3.729g, then the volume of iron is 0.474cm³
HOW TO CALCULATE VOLUME:
- The volume of a substance can be calculated by dividing the mass by its density. That is;
Volume (mL) = mass (g) ÷ density (g/mL)
- The density of iron is given as 7.87g/cm³ while its mass is 3.729g of iron. Hence, the volume can be calculated as follows:
Volume = 3.729 ÷ 7.87
Volume = 0.474cm³
Therefore, the volume of iron is 0.474cm³
Learn more: brainly.com/question/2040396?referrer=searchResults
Answer:
0.56L
Explanation:
This question requires the Ideal Gas Law: where P is the pressure of the gas, V is the volume of the gas, n is the number of moles of the gas, R is the Ideal Gas constant, and T is the Temperature of the gas.
Since all of the answer choices are given in units of Liters, it will be convenient to use a value for R that contains "Liters" in its units:
Since the conditions are stated to be STP, we must remember that STP is Standard Temperature Pressure, which means and
Lastly, we must calculate the number of moles of there are. Given 0.80g of , we will need to convert with the molar mass of . Noting that there are 2 oxygen atoms, we find the atomic mass of O from the periodic table (16g/mol) and multiply by 2:
Thus,
Isolating V in the Ideal Gas Law:
...substituting the known values, and simplifying...
So, 0.80g of would occupy 0.56L at STP.