Answer:
vertex form
Step-by-step explanation:
y= -3(x-5)^2+7
This equation is written in vertex form
y = a(x-h)^2 +k
The vertex is (h,k)
Step-by-step explanation:
AB = 3
by similaritiy criterion
CE/ CB= ED/AB
4/6= 2/AB
AB = 3
<em><u>plz</u></em><em><u> mark</u></em><em><u> my</u></em><em><u> answer</u></em><em><u> as</u></em><em><u> brainlist</u></em><em><u> </u></em><em><u>plzzzz</u></em><em><u> </u></em><em><u>also </u></em><em><u>vote </u></em><em><u>me</u></em><em><u> </u></em><em><u>.</u></em><em><u>.</u></em><em><u>if </u></em><em><u>you</u></em><em><u> </u></em><em><u>find</u></em><em><u> it</u></em><em><u> </u></em><em><u>useful</u></em><em><u>.</u></em>
Answer:
Step-by-step explanation:
Given a general quadratic formula given as ax²bx+c = 0
To generate the general formula to solve the quadratic equation, we can use the completing the square method as shown;
Step 1:
Bringing c to the other side
ax²+bx = -c
Dividing through by coefficient of x² which is 'a' will give:
x²+(b/a)x = -c/a
- Completing the square at the left hand side of the equation by adding the square of half the coefficient x i.e (b/2a)² and adding it to both sides of the equation we have:
x²+(b/a)x+(b/2a)² = -c/a+(b/2a)²
(x+b/2a)² = -c/a+(b/2a)²
(x+b/2a)² = -c/a + b²/4a²
- Taking the square root of both sides
√(x+b/2a)² = ±√-c/a + b²/√4a²
x+b/2a = ±√(-4ac+b²)/√4a²
x+b/2a =±√b²-4ac/2a
- Taking b/2a to the other side
x = -b/2a±√√b²-4ac/2a
Taking the LCM:
x = {-b±√b²-4ac}/2a
This gives the vertex form with how it is used to Solve a quadratic equation.
The answer is 59,375 there hope this helps