Empirical evidence is information acquired by observation or experimentation
Answer:
Substances can change phase—often because of a temperature change. At low temperatures, most substances are solid; as the temperature increases, they become liquid; at higher temperatures still, they become gaseous.
The process of a solid becoming a liquid is called melting. (an older term that you may see sometimes is fusion). The opposite process, a liquid becoming a solid, is called solidification. For any pure substance, the temperature at which melting occurs—known as the melting point—is a characteristic of that substance. It requires energy for a solid to melt into a liquid. Every pure substance has a certain amount of energy it needs to change from a solid to a liquid. This amount is called the enthalpy of fusion (or heat of fusion) of the substance, represented as ΔHfus. Some ΔHfus values are listed in Table 10.2 “Enthalpies of Fusion for Various Substances”; it is assumed that these values are for the melting point of the substance. Note that the unit of ΔHfus is kilojoules per mole, so we need to know the quantity of material to know how much energy is involved. The ΔHfus is always tabulated as a positive number. However, it can be used for both the melting and the solidification processes as long as you keep in mind that melting is always endothermic (so ΔH will be positive), while solidification is always exothermic (so ΔH will be negative).
=Spectral lines are produced by transitions of electrons within atoms or ions. As the electrons move closer to or farther from the nucleus of an atom (or of an ion), energy in the form of light (or other radiation) is emitted or absorbed.…
A. It is the reaction of an alkali metal with water.
B. Hydrogen , the test for hydrogen goes out with a squeaky pop.
C. Sodium + water —> sodium hydroxide + hydrogen
The answer
first of all, we should know that NaOH is a strong base. For such a product, the conentration of the OH - is equivalent to the concentration of the NaOH itself.
that means:
[ OH -] = [ NaOH] =<span>0.001 62
and for a strong basis, pH can be calculated as pH = 14 + log </span>[ OH -]
first we compute log [ OH -] :
log [ OH -] = log (0.001 62)= -2.79
finally pH = 14 -2.79 = 11.20