<u>Answer:</u> The number of moles of strontium bicarbonate is 
<u>Explanation:</u>
Formula units are defined as lowest whole number ratio of ions in an ionic compound. It is calculate by multiplying the number of moles by Avogadro's number which is 
We are given:
Number of formula units of 
As,
number of formula units are contained in 1 mole of a substance.
So,
number of formula units will be contained in =
of strontium bicarbonate.
Hence, the number of moles of strontium bicarbonate is 
Answer:
Fe + CuCl2 = FeCl2 + Cu
Explanation:
This is already balanced.
Answer:
12.99
Explanation:
<em>A chemist dissolves 716. mg of pure potassium hydroxide in enough water to make up 130. mL of solution. Calculate the pH of the solution. (The temperature of the solution is 25 °C.) Be sure your answer has the correct number of significant digits.</em>
Step 1: Given data
- Mass of KOH: 716. mg (0.716 g)
- Volume of the solution: 130. mL (0.130 L)
Step 2: Calculate the moles corresponding to 0.716 g of KOH
The molar mass of KOH is 56.11 g/mol.
0.716 g × 1 mol/56.11 g = 0.0128 mol
Step 3: Calculate the molar concentration of KOH
[KOH] = 0.0128 mol/0.130 L = 0.0985 M
Step 4: Write the ionization reaction of KOH
KOH(aq) ⇒ K⁺(aq) + OH⁻(aq)
The molar ratio of KOH to OH⁻is 1:1. Then, [OH⁻] = 0.0985 M
Step 5: Calculate the pOH
We will use the following expression.
pOH = -log [OH⁻] = -log 0.0985 = 1.01
Step 6: Calculate the pH
We will use the following expression.
pH + pOH = 14
pH = 14 - pOH = 14 -1.01 = 12.99
Answer:
Mass is both a property of a physical body and a measure of its resistance to acceleration when a net force is applied. An object's mass also determines the strength of its gravitational attraction to other bodies. The basic SI unit of mass is the kilogram.
Gravity, or gravitation, is a natural phenomenon by which all things with mass or energy—including planets, stars, galaxies, and even light—are brought toward one another. On Earth, gravity gives weight to physical objects, and the Moon's gravity causes the ocean tides.
When dealing with the force of gravity between two objects, there are only two things that are important – mass, and distance. The force of gravity depends directly upon the masses of the two objects, and inversely on the square of the distance between them.
Gravitational energy or gravitational potential energy is the potential energy a massive object has in relation to another massive object due to gravity. It is the potential energy associated with the gravitational field, which is released when the objects fall towards each other.
In science and engineering, the weight of an object is the force acting on the object due to gravity. Some standard textbooks define weight as a vector quantity, the gravitational force acting on the object. Others define weight as a scalar quantity, the magnitude of the gravitational force
Newton's law of universal gravitation is usually stated as that every particle attracts every other particle in the universe with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers.
Explanation:
Answer:
1.428 moles
Explanation:
If 0.0714 moles of N2 gas occupies 1.25 L space,
how many moles of N2 have a volume of 25.0 L?
Assume temperature and pressure stayed constant.
we experience it 0.0714 moles: 1.25L space
x moles : 25L of space
to get the x moles, cross multiply
(0.0714 x 25)/1.25
1.785/1.25 = 1.428 moles