Answer:
17.55 carats
Explanation:
First, there is a need to know the mass of 1.0 mL of diamonds. The density of diamond is 3.51 g/mL and density is the ratio of mass and that of volume. Hence;
mass of diamond = density of diamond x volume.
Since the volume of the diamond is 1.0 mL and the density is 3.51 g/mL,
mass of 1.0 mL of diamond = 3.51 x 1.0 = 3.51 g.
1 g = 5 carats, therefore 3.51 g would be;
3.51 x 5 = 17.55 carats.
<em>Hence, there would be 17.55 carats of diamond in 1.0 mL of diamond.</em>
The product is magnesium sulfate plus hydrogen gas,as per this equation:
<span>Mg + H2SO4 = MgSO4 + H<span>2(g)</span></span>
Answer:
Explanation:
Hello,
The law of mass action, allows us to know the required amounts, thus, for this chemical reaction it is:
![\frac{1}{-3} \frac{d[D]}{dt} =\frac{1}{-1} \frac{d[E]}{dt} =\frac{1}{-2} \frac{d[F]}{dt} =\frac{1}{5} \frac{d[G]}{dt} =\frac{1}{4} \frac{d[H]}{dt}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B-3%7D%20%5Cfrac%7Bd%5BD%5D%7D%7Bdt%7D%20%3D%5Cfrac%7B1%7D%7B-1%7D%20%5Cfrac%7Bd%5BE%5D%7D%7Bdt%7D%20%3D%5Cfrac%7B1%7D%7B-2%7D%20%5Cfrac%7Bd%5BF%5D%7D%7Bdt%7D%20%3D%5Cfrac%7B1%7D%7B5%7D%20%5Cfrac%7Bd%5BG%5D%7D%7Bdt%7D%20%3D%5Cfrac%7B1%7D%7B4%7D%20%5Cfrac%7Bd%5BH%5D%7D%7Bdt%7D)
Now, we answer:
(a)
![\frac{d[H]}{dt}=4*\frac{1}{-3} *(-0.12M/s)=0.16M/s](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BH%5D%7D%7Bdt%7D%3D4%2A%5Cfrac%7B1%7D%7B-3%7D%20%2A%28-0.12M%2Fs%29%3D0.16M%2Fs)
(b)
![\frac{d[E]}{dt}=-1*\frac{1}{5} *(0.2M/s)=-0.04M/s](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BE%5D%7D%7Bdt%7D%3D-1%2A%5Cfrac%7B1%7D%7B5%7D%20%2A%280.2M%2Fs%29%3D-0.04M%2Fs)
(c) Since no initial data is specified, we could establish the rate of the reaction as based of the law of mass action:
![r=\frac{1}{-3} \frac{d[D]}{dt} =\frac{1}{-1} \frac{d[E]}{dt} =\frac{1}{-2} \frac{d[F]}{dt} =\frac{1}{5} \frac{d[G]}{dt} =\frac{1}{4} \frac{d[H]}{dt}](https://tex.z-dn.net/?f=r%3D%5Cfrac%7B1%7D%7B-3%7D%20%5Cfrac%7Bd%5BD%5D%7D%7Bdt%7D%20%3D%5Cfrac%7B1%7D%7B-1%7D%20%5Cfrac%7Bd%5BE%5D%7D%7Bdt%7D%20%3D%5Cfrac%7B1%7D%7B-2%7D%20%5Cfrac%7Bd%5BF%5D%7D%7Bdt%7D%20%3D%5Cfrac%7B1%7D%7B5%7D%20%5Cfrac%7Bd%5BG%5D%7D%7Bdt%7D%20%3D%5Cfrac%7B1%7D%7B4%7D%20%5Cfrac%7Bd%5BH%5D%7D%7Bdt%7D)
Thus, any of the available expressions are suitable to quantify the rate of the reaction.
Best regards.
Answer:
D
Explanation:
the charges need to balence out
so finding the LCM which is 12 we find we need 3x's
and 4 zs
so that makes the formula X3Z4 which is D