1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
blagie [28]
3 years ago
13

A series R-L circuit is given. Circuit is connected to an AC voltage generator. a) Derive equations for magnitude and phase of c

urrent and voltages on resistor and inductor in the phasor domain. Assume that the resistance of the resistor is R, inductance of the inductor is L, magnitude of the source voltage is Vm and phase of the source voltage is θ. Note that you don’t have numbers in this step, so to find the magnitude and phase for current I and voltages VR and VL you must first derive both numerator and denominator in polar form using variables R, omega, L, Vm, Vphase (do not use numbers). The solutions should look like equations in slide 24/27! b) In this step, assume that R
Engineering
1 answer:
igomit [66]3 years ago
6 0

Answer:

The equations for magnitude and phase of current and voltages on resistor and inductor are:

I=\frac{V_m}{\sqrt{R^2+(\omega L)^2}}\angle \theta - tan^{-1}(\omega L / R)

V_R=I\cdot Z_R=\frac{V_m \cdot R}{\sqrt{R^2+(\omega L)^2}}\angle \theta - tan^{-1}(\omega L / R)

V_L=I\cdot Z_L=\frac{V_m \cdot (\omega L)}{\sqrt{R^2+(\omega L)^2}}\angle \theta - tan^{-1}(\omega L / R)+90^{\circ}

Explanation:

The first step is to find the impedances of the resistance (R) and the inductor (L).

The impedance of the resistor is:

  • Rectangular form: Z_R=R
  • Polar form: Z_R=R\angle 0^{\circ}

The impedance of the inductor is:

  • Rectangular form: Z_L=j\omega L
  • Polar form: Z_L=\omega L \angle 90^{\circ}

Where \omega is the angular frequency of the source, and the angle is 90^{\circ} because a pure imaginary number is on the imaginary axis (y-axis).

The next step is to find the current expression. It is the same for the resistor and inductor because they are in series. The total impedance equals the sum of each one.

I=\frac{V}{Z_R+Z_L}

It is said that V=V_m\angle \theta, so, the current would be:

I=\frac{V_m\angle \theta }{R+j\omega L}

The numerator must be converted to polar form by calculating the magnitude and the angle:

  • The magnitude is \sqrt{R^2+(\omega L)^2}
  • The angle is tan^{-1}(\omega L / R)

The current expression would be as follows:

I=\frac{V_m\angle \theta }{\sqrt{R^2+(\omega L)^2}\, \angle tan^{-1}(\omega L / R)}

When dividing, the angles are subtracted from each other.

The final current expression is:

I=\frac{V_m}{\sqrt{R^2+(\omega L)^2}}\angle \theta - tan^{-1}(\omega L / R)

The last step is calculating the voltage on the resistor V_R and the voltage on the inductor V_L. In this step the polar form of the impedances could be used. Remember that V=I\cdot Z.

(Also remember that when multiplying, the angles are added from each other)

Voltage on the resistor V_R

V_R=I\cdot Z_R=\bigg( \frac{V_m}{\sqrt{R^2+(\omega L)^2}}\angle \theta - tan^{-1}(\omega L / R)\bigg) \cdot (R\angle 0^{\circ})

The final resistor voltage expression is:

V_R=I\cdot Z_R=\frac{V_m \cdot R}{\sqrt{R^2+(\omega L)^2}}\angle \theta - tan^{-1}(\omega L / R)

Voltage on the inductor V_L

V_L=I\cdot Z_L=\bigg( \frac{V_m}{\sqrt{R^2+(\omega L)^2}}\angle \theta - tan^{-1}(\omega L / R)\bigg) \cdot (\omega L \angle 90^{\circ})

The final inductor voltage expression is:

V_L=I\cdot Z_L=\frac{V_m \cdot (\omega L)}{\sqrt{R^2+(\omega L)^2}}\angle \theta - tan^{-1}(\omega L / R)+90^{\circ}

Summary: the final equations for magnitude and phase of current and voltages on resistor and inductor are:

I=\frac{V_m}{\sqrt{R^2+(\omega L)^2}}\angle \theta - tan^{-1}(\omega L / R)

V_R=I\cdot Z_R=\frac{V_m \cdot R}{\sqrt{R^2+(\omega L)^2}}\angle \theta - tan^{-1}(\omega L / R)

V_L=I\cdot Z_L=\frac{V_m \cdot (\omega L)}{\sqrt{R^2+(\omega L)^2}}\angle \theta - tan^{-1}(\omega L / R)+90^{\circ}

You might be interested in
What is the term for removing refrigerant in any condition from a system and storing it in an external container without necessa
Vlad [161]

Answer:

The term you are looking for is recovery. The process of recovering refrigerant is to remove some or all the refrigerants of a system and deposit it in an external storing for further processing or storage. This recovered refrigerant won´t be used again in the system in any near time period.

If the refrigerant is removed to be instantly processed and cleaned to be reutilized in the same system, this action is known as recycling.

8 0
3 years ago
Twenty-five wooden beams were ordered or a construction project. The sample mean and he sample standard deviation were measured
aksik [14]

Answer:

Correct option: B. 90%

Explanation:

The confidence interval is given by:

CI = [\bar{x} - z\sigma_{\bar{x}} , \bar{x}+z\sigma_{\bar{x}} ]

If \bar{x} is 190, we can find the value of z\sigma_{\bar{x}}:

\bar{x} - z\sigma_{\bar{x}}  = 188.29

190 - z\sigma_{\bar{x}}  = 188.29

z\sigma_{\bar{x}}  = 1.71

Now we need to find the value of \sigma_{\bar{x}}:

\sigma_{\bar{x}} = s / \sqrt{n}

\sigma_{\bar{x}} = 5/ \sqrt{25}

\sigma_{\bar{x}} = 1

So the value of z is 1.71.

Looking at the z-table, the z value that gives a z-score of 1.71 is 0.0436

This value will occur in both sides of the normal curve, so the confidence level is:

CI = 1 - 2*0.0436 = 0.9128 = 91.28\%

The nearest CI in the options is 90%, so the correct option is B.

4 0
4 years ago
What are the three elementary parts of a vibrating system?
zhenek [66]

Answer:

the three part are mass, spring, damping

Explanation:

vibrating system consist of three elementary system namely

1) Mass - it is a rigid body due to which system experience vibration and kinetic energy due to vibration is directly proportional to velocity of the body.

2) Spring -  the part that has elasticity and help to hold mass

3) Damping - this part considered to have zero mass and  zero elasticity.

7 0
3 years ago
Windmills slow the air and cause it to fill a larger channel as it passes through the blades. Consider a circular windmill with
Scilla [17]

Answer:

DIAMETER  = 9.797 m

POWER = \dot W = 28.6 kW

Explanation:

Given data:

circular windmill diamter D1 = 8m

v1 = 12 m/s

wind speed = 8 m/s

we know that specific volume is given as

v =\frac{RT}{P}

  where v is specific volume of air

considering air pressure is 100 kPa and temperature 20 degree celcius

v =  \frac{0.287\times 293}{100}

v = 0.8409 m^3/ kg

from continuity equation

A_1 V_1 = A_2 V_2

\frac{\pi}{4}D_1^2 V_1 = \frac{\pi}{4}D_1^2 V_2

D_2 = D_1 \sqrt{\frac{V_1}{V_2}}

D_2 = 8 \times \sqrt{\frac{12}{8}}

D_2 = 9.797 m

mass flow rate is given as

\dot m = \frac{A_1 V_1}{v} = \frac{\pi 8^2\times 12}{4\times 0.8049}

\dot m = 717.309 kg/s

the power produced \dot W = \dot m \frac{ V_1^2 - V_2^2}{2} = 717.3009 [\frac{12^2 - 8^2}{2} \times \frac{1 kJ/kg}{1000 m^2/s^2}]

\dot W = 28.6 kW

8 0
3 years ago
Given a two-dimensional steady inviscid air flow field with no body forces described by the velocity field given below. Assuming
kolbaska11 [484]

Answer:

the pressure gradient in the x direction = -15.48Pa/m

Explanation:

  • The concept of partial differentiation was used in the determination of the expression for u and v.
  • each is partially differentiated with respect to x and the appropriate substitution was done to get the value of the pressure gradient as shown in the attached file.

4 0
3 years ago
Other questions:
  • If x < 5 and x >c, give a value of c such that there
    9·1 answer
  • A soil has the following Green-Ampt parameters Effective porosity 0.400 Initial volumetric moisture content-15% Hydraulic Conduc
    6·1 answer
  • What does CADCAM stand for ?
    10·2 answers
  • (a) Design a first-order passive high-pass filter with a cutoff frequency of 1000 rad/sec.
    8·1 answer
  • What is the maximum volume flow rate, in m^3/hr, of water at 15.6°C a 10-cm diameter pipe can carry such that the flow will be l
    9·1 answer
  • Which one of the following is not an economic want?
    6·1 answer
  • Based on the scenario, which type of engineering identifies Greg's role in Ethiopia?
    15·1 answer
  • Water is pumped from a lake to a storage tank 18 m above at a rate of 70 L/s while consuming 20.4 kW of electric power. Disregar
    13·1 answer
  • Chemical engineers determine how to transport chemicals.<br> O True<br> False
    8·2 answers
  • Identify three questions a patient might ask of the nuclear medicine technologist performing a nuclear medicine exam.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!