Answer:
- def median(l):
- if(len(l) == 0):
- return 0
- else:
- l.sort()
- if(len(l)%2 == 0):
- index = int(len(l)/2)
- mid = (l[index-1] + l[index]) / 2
- else:
- mid = l[len(l)//2]
- return mid
-
- def mode(l):
- if(len(l)==0):
- return 0
-
- mode = max(set(l), key=l.count)
- return mode
-
- def mean(l):
- if(len(l)==0):
- return 0
- sum = 0
- for x in l:
- sum += x
- mean = sum / len(l)
- return mean
-
- lst = [5, 7, 10, 11, 12, 12, 13, 15, 25, 30, 45, 61]
- print(mean(lst))
- print(median(lst))
- print(mode(lst))
Explanation:
Firstly, we create a median function (Line 1). This function will check if the the length of list is zero and also if it is an even number. If the length is zero (empty list), it return zero (Line 2-3). If it is an even number, it will calculate the median by summing up two middle index values and divide them by two (Line 6-8). Or if the length is an odd, it will simply take the middle index value and return it as output (Line 9-10).
In mode function, after checking the length of list, we use the max function to estimate the maximum count of the item in list (Line 17) and use it as mode.
In mean function, after checking the length of list, we create a sum variable and then use a loop to add the item of list to sum (Line 23-25). After the loop, divide sum by the length of list to get the mean (Line 26).
In the main program, we test the three functions using a sample list and we shall get
20.5
12.5
12
Answer:
D
Explanation:
the way vertices are connected may be different so having same number of edges do not mean that total degree will also be same.
Answer:
a) What is the surface temperature, in °C, after 400 s?
T (0,400 sec) = 800°C
b) Yes, the surface temperature is greater than the ignition temperature of oak (400°C) after 400 s
c) What is the temperature, in °C, 1 mm from the surface after 400 s?
T (1 mm, 400 sec) = 798.35°C
Explanation:
oak initial Temperature = 25°C = 298 K
oak exposed to gas of temp = 800°C = 1073 K
h = 20 W/m².K
From the book, Oak properties are e=545kg/m³ k=0.19w/m.k Cp=2385J/kg.k
Assume: Volume = 1 m³, and from energy balance the heat transfer is an unsteady state.
From energy balance: 
Initial temperature wall = 
Surface temperature = T
Gas exposed temperature = 
Answer:
a) P ≥ 22.164 Kips
b) Q = 5.4 Kips
Explanation:
GIven
W = 18 Kips
μ₁ = 0.30
μ₂ = 0.60
a) P = ?
We get F₁ and F₂ as follows:
F₁ = μ₁*W = 0.30*18 Kips = 5.4 Kips
F₂ = μ₂*Nef = 0.6*Nef
Then, we apply
∑Fy = 0 (+↑)
Nef*Cos 12º - F₂*Sin 12º = W
⇒ Nef*Cos 12º - (0.6*Nef)*Sin 12º = 18
⇒ Nef = 21.09 Kips
Wedge moves if
P ≥ F₁ + F₂*Cos 12º + Nef*Sin 12º
⇒ P ≥ 5.4 Kips + 0.6*21.09 Kips*Cos 12º + 21.09 Kips*Sin 12º
⇒ P ≥ 22.164 Kips
b) For the static equilibrium of base plate
Q = F₁ = 5.4 Kips
We can see the pic shown in order to understand the question.