1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ELEN [110]
3 years ago
10

Item110pointseBook HintPrintReferences Check my work Check My Work button is now disabled5Item 1Item 1 10 pointsAn ideal Diesel

cycle has a compression ratio of 18 and a cutoff ratio of 1.5. Determine the maximum air temperature and the rate of heat addition to this cycle when it produces 150 hp of power, the cycle is repeated 1200 times per minute, and the state of the air at the beginning of the compression is 95 kPa and 17°C. Use constant specific heats at room temperature. The properties of air at room temperature are cp = 1.005 kJ/kg·K, cv = 0.718 kJ/kg·K, R = 0.287 kJ/kg·K, and k = 1.4.
Engineering
1 answer:
konstantin123 [22]3 years ago
5 0

Answer:

The answer is given below

Explanation:

Given that:

Compression ratio (r) = 18, cut off ratio (r_c) = 1.5, k = 1.4, W = 150 hp, initial temperature (Ti) = 17°C = 290 K

The rate of heat addition (Qin) is given by the equation:

Q_{in}=\frac{W*r^{k-1}*k(r_c-1)}{r^{k-1}*k(r_c-1)-(r_c^k-1)} \\\\substituting\ values\ into\ the \ equation\ gives:\\\\Q_{in}=\frac{150*18^{1.4-1}*1.4(1.5-1)}{18^{1.4-1}*1.4(1.5-1)-(1.5^{1.4}-1)}=\frac{333.6555}{2.2244-0.7641} =\frac{333.6555}{1.4603} =228.5\ hp

Therefore, The rate of heat addition is 228.5 hp

The maximum air temperature is determined using the Compression ratio, cut off ratio and the initial temperature. The maximum air temperature (T_{max}) is given by the formula:

T_{max}=T_{in}*r^{k-1}*r_c=290*18^{1.4-1}*1.5=1382.3\ K=1109.3^oC

The maximum air temperature is 1109.3°C

You might be interested in
A well-insulated tank in a vapor power plant operates at steady state. Saturated liquid water enters at inlet 1 at a rate of 125
Gekata [30.6K]

Answer:

a) \dot m_{3} = 135\,\frac{lbm}{s}, b) h_{3}=168.965\,\frac{BTU}{lbm}, c) T = 200.829\,^{\textdegree}F

Explanation:

a) The tank can be modelled by the Principle of Mass Conservation:

\dot m_{1} + \dot m_{2} - \dot m_{3} = 0

The mass flow rate exiting the tank is:

\dot m_{3} = \dot m_{1} + \dot m_{2}

\dot m_{3} = 125\,\frac{lbm}{s} + 10\,\frac{lbm}{s}

\dot m_{3} = 135\,\frac{lbm}{s}

b) An expression for the specific enthalpy at outlet is derived from the First Law of Thermodynamics:

\dot m_{1}\cdot h_{1} + \dot m_{2} \cdot h_{2} - \dot m_{3}\cdot h_{3} = 0

h_{3} = \frac{\dot m_{1}\cdot h_{1}+\dot m_{2}\cdot h_{2}}{\dot m_{3}}

Properties of water are obtained from tables:

h_{1}=180.16\,\frac{BTU}{lbm}

h_{2}=28.08\,\frac{BTU}{lbm} + \left(0.01604\,\frac{ft^{3}}{lbm}\right)\cdot (14.7\,psia-0.25638\,psia)

h_{2}=29.032\,\frac{BTU}{lbm}

The specific enthalpy at outlet is:

h_{3}=\frac{(125\,\frac{lbm}{s} )\cdot (180.16\,\frac{BTU}{lbm} )+(10\,\frac{lbm}{s} )\cdot (29.032\,\frac{BTU}{lbm} )}{135\,\frac{lbm}{s} }

h_{3}=168.965\,\frac{BTU}{lbm}

c) After a quick interpolation from data availables on water tables, the final temperature is:

T = 200.829\,^{\textdegree}F

8 0
3 years ago
Read 2 more answers
Calculate the molar heat capacity of a monatomic non-metallic solid at 500K which is characterized by an Einstein temperature of
aleksandr82 [10.1K]

Answer:

Explanation:

Given

Temperature of solid T=500\ K

Einstein Temperature T_E=300\ K

Heat Capacity in the Einstein model is given by

C_v=3R\left [ \frac{T_E}{T}\right ]^2\frac{e^{\frac{T_E}{T}}}{\left ( e^{\frac{T_E}{T}}-1\right )^2}

e^{\frac{3}{5}}=1.822

Substitute the values

C_v=3R\times (\frac{300}{500})^2\times (\frac{1.822}{(1.822-1)^2})

C_v=3R\times \frac{9}{25}\times \frac{1.822}{(0.822)^2}

C_v=0.97\times (3R)            

6 0
3 years ago
Kinetic energy is defined as energy of an object in:
Murrr4er [49]

your answer is c. motion

5 0
3 years ago
Read 2 more answers
10% A steel beam W18x76 spans 32 feet and is subjected to a Moment of 334 kips-ft. Find the load w on the beam. Determine the de
Lilit [14]

Answer:

w = 10.437 kips

deflection at 1/4 span  20.83\E ft

at mid span = 1.23\E ft

shear stress  7.3629 psi

Explanation:

area of cross section = 18*76

length of span = 32 ft

moment = 334 kips-ft

we know that

moment = load *eccentricity

334 = w * 32

w = 10.437 kips

deflection at 1/4 span

\delta = \frac{wa^2b^2}{3EI}

= \frac{10.4375*8^2 *24^2}{3E \frac{BD^3}{12}}

         =\frac{10.437 *8^2*24^2}{3E \frac{18*16^3}{12}}

         = 20.83\E ft

at mid span

\delta = \frac{wl^3}{48EI}

= \frac{10.43 *32^3}{48 *E*\frac{18*16^3}{12}}

\delta = 1.23\E ft

shear stress

\tau = \frac{w}{A} = \frac{10.43 7*10^3}{18*76} =7.3629 psi

6 0
3 years ago
A home electrical system is joined to the electric company's system at the junction of the
aleksandrvk [35]

That would be B, I hope this helps!

5 0
3 years ago
Other questions:
  • Type a statement using srand() to seed random number generation using variable seedVal. Then type two statements using rand() to
    5·1 answer
  • g The pump inlet is located 1 m above an arbitrary datum. The pressure and velocity at the inlet are 100 kPa and 2 m/s, respecti
    8·1 answer
  • . A roadway is being designed capable of allowing 70 mph vehicle speed. The superelevation around one curve is 0.05 inches per i
    15·1 answer
  • Wqqwfqwfqwfqfqfqffqwffqwqfqqfqfqffqqfqfwccc
    12·2 answers
  • The viscosity of the water was 2.3×10^−5lb⋅⋅s/ft^2 and the water density was 1.94 slugs/ft^3. Estimate the drag on an 88-ft diam
    13·1 answer
  • A railroad runs form city A to city B, a distance of 800km, through mountainous terrain. The present one-way travel time (includ
    13·1 answer
  • Which one of these is not a successful budgeting strategy
    5·2 answers
  • Nitrogen (N2) enters an insulated compressor operating at steady state at 1 bar, 378C with a mass flow rate of 1000 kg/h and exi
    8·1 answer
  • Why is engineering profession important ​
    11·1 answer
  • who wants points for now work just put any answer who wants points for now work just put any answer who wants points for now wor
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!