Answer: b) False
Explanation: Microscopic energy is the the energy that is based on the molecular level in a particular energy system. Microscopic energy basically comprise with tiny particles like atoms and molecules .The sum of all microscopic form of energy e together make the internal energy .Therefore, the statement given is false because the sum of all the microscopic forms of energy of a system is quantified as internal energy not flow energy.
Answer:
both
Explanation:
Both the technician are correct, ac generator output can be tested in both ways. The two ways are current output test to check ac generator output. and voltage output test to check output.
Answer:
Time taken for the capacitor to charge to 0.75 of its maximum capacity = 2 × (Time take for the capacitor to charge to half of its capacity)
Explanation:
The charging of a capacitor/the build up of its voltage follows an exponential progression and is given by
V(t) = V₀ [1 - e⁻ᵏᵗ]
where k = (1/time constant)
when V(t) = V₀/2
(1/2) = 1 - e⁻ᵏᵗ
e⁻ᵏᵗ = 0.5
In e⁻ᵏᵗ = In 0.5 = - 0.693
-kt = - 0.693
kt = 0.693
t = (0.693/k)
Recall that k = (1/time constant)
Time to charge to half of max voltage = T(1/2)
T(1/2) = 0.693 (Time constant)
when V(t) = 0.75
0.75 = 1 - e⁻ᵏᵗ
e⁻ᵏᵗ = 0.25
In e⁻ᵏᵗ = In 0.25 = -1.386
-kt = - 1.386
kt = 1.386
t = 1.386(time constant) = 2 × 0.693(time constant)
Recall, T(1/2) = 0.693 (Time constant)
t = 2 × T(1/2)
Hope this Helps!!!
The advanced safety features that are now standard on 2023 Z are:
- Pedestrian Detection and Automatic Emergency Braking
- Intelligent Forward Collision Warning (IFCW).
- Blind Spot Alert.
<h3>What is 2023 Z?</h3>
The above is the short name or nickname for the All New 2023 Nissan Z coupe Sports car.
The care also features Advanced driver assist and safety technology which relieves the driver's everyday workload, allowing you to focus on what matters most.
Learn more about safety features in cars:
brainly.com/question/24078882
#SPJ1
Answer:
a) 4.1 kw
b) 4.68 tons
c) 4.02
Explanation:
Saturated vapor enters compressor at ( p1 ) = 2.6 bar
Saturated liquid exits the condenser at ( p2 ) = 12 bar
Isentropic compressor efficiency = 80%
Mass flow rate = 7 kg/min
A) Determine compressor power in KW
compressor power = m ( h2 - h1 )
= 7 / 60 ( 283.71 - 248.545 )
= 4.1 kw
B) Determine refrigeration capacity in tons = m ( h1 - h4 )
= 7/60 ( 248.545 - 107.34 )
= 16.47 kw = 4.68 tons
C) coefficient of performance ( COP )
= Refrigeration capacity / compressor power
= 16.47 / 4.1 = 4.02
Attached below is the beginning part of the solution