This would be force. Acceleration is increasing the speed in an object and velocity is how fast an object is going. Also, inertia basically says that an object will stay at rest or in motion unless an outside force acts on it. So, for example, a ball will stay in the air unless gravity acts on it and pulls it down. By definition, force is any action, unopposed (or by itself without any other forces that would do the opposite) will change the motion of an object, so this definitely makes the most sense for the question. Hope this helps!
Answer:
715 N
Explanation:
Since the system is moving at a constant velocity, the net force must be 0. The tension on the road is equal and opposite direction with the kinetic friction force created by the road and the stuntman.
Let g = 9.8 m/s2
Gravity and equalized normal force is:
N = P = mg = 107*9.8 = 1048.6 N
Kinetic friction force and equalized tension force on the rope is

Answer:
The magnitude of the average induced emf is 90V
Explanation:
Given;
area of the square coil, A = 0.4 m²
number of turns, N = 15 turns
magnitude of the magnetic field, B = 0.75 T
time of change of magnetic field, t = 0.05 s
The magnitude of the average induced emf is given by;
E = -NAB/t
E = -(15 x 0.4 x 0.75) / 0.05
E = -90 V
|E| = 90 V
Therefore, the magnitude of the average induced emf is 90V
Answer:
the mass of the lipid content, to the nearest hundredth of a kg, in this solution =0.46 kg
Explanation:
Total heat content of the fat = heat content of water +heat content of the lipids
Let it be Q
the Q= (mcΔT)_lipids + (mcΔT)_water
total mass of fat M= 0.63 Kg
Q= heat supplied = 100 W in 5 minutes
ΔT= 20°C
c_lipid= 1700J/(kgoC)
c_water= 4200J/(kgoC)
then,

solving the above equation we get
m= 0.46 kg
the mass of the lipid content, to the nearest hundredth of a kg, in this solution =0.46 kg