Answer:

Explanation:
Given


Required
Determine the speed of B w.r.t A
The question implies that, we determine the relative velocity of B w.r.t A
Because both trains are moving towards one another, the required velocity is a
both trains:
This is shown below:



Answer:
D) Vertically.
Explanation:
A free body diagram is used to represent all the forces acting in a body. forces like, the force of gravity as a result of the gravitational interaction between the object and the Earth (W), the frictional force opposite to the movement of the object (
), the normal force due to the plane and the object (N) and the force applied to start the movement in a particular direction (F).
As is show in the free body diagram of the system, W, which is the weight of the body as a consequence of the gravitational force, is at an angle
below the inclined plane. that angle between the plane and the x axis is the same that the one of the inclined plane with respect to the horizontal, Since its sides are perpendicular.
Notice how W goes always in the direction to the center of mass of Earth in a vertical path (For comparison see figure (a) and (b)).
M = mass of aluminium = 1.11 kg
= specific heat of aluminium = 900
= initial temperature of aluminium = 78.3 c
m = mass of water = 0.210 kg
= specific heat of water = 4186
= initial temperature of water = 15 c
T = final equilibrium temperature = ?
using conservation of heat
Heat lost by aluminium = heat gained by water
M
(
- T) = m
(T -
)
(1.11) (900) (78.3 - T) = (0.210) (4186) (T - 15)
T = 48.7 c
Answer: Sanjay can burn 100 more calories every 30 minutes if he chooses to lift weights instead of watching tv
Explanation: 133-33= 100 calories (says in article and i just answered it)
Answer:
213 nA
2.13 mA
851e^-t μA
Explanation:
We have a pretty straightforward question here.
Ohms Law states that the current in an electric circuit is directly proportional to the voltage and inversely proportional to the resistance in the circuit. It is mathematically written as
V = IR, since we need I, we can write that
I = V/R
a) at V = 1 mV
I = (1 * 10^-3) / 4.7 * 10^3
I = 2.13 * 10^-7 A or 213 nA
b) at V = 10 V
I = 10 / 4.7 * 10^3
I = 0.00213 A or 2.13 mA
c) at V = 4e^-t
I = 4e^-t / 4.7 * 10^3
I = 0.000851e^-t A or 851e^-t μA