Answer:
A = 2 cm
, λ = 8 cm
Explanation:
The amplitude of a wave is the maximum height it has, in this case the height is measured by the vertical ruler,
We are told the balance point is in the reading of 5 cm, that the maximum reading is 3 cm and the Minimum reading is 7 cm. Therefore, the distance from the ends of the ridge to the point of equilibrium is
d = 7-5 = 2 cm
d = 5-3 = 2 cm
A = 2 cm
The wavelength is the minimum horizontal distance for which the wave is repeated, that is measured by the horizontal ruler.
The initial reading for 4 cm and the final reading for 8 cm, this distance corresponds to a crest of the wave, the complete wave is formed by two crests whereby the wavelength is twice this value
Δx = 8-4 = 4 cm
λ = 2 Δx
λ = 8 cm
Answer:
4.7 m³
Explanation:
We'll use the gas law P1 • V1 / T1 = P2 • V2 / T2
* Givens :
P1 = 101 kPa , V1 = 2 m³ , T1 = 300.15 K , P2 = 40 kPa , T2 = 283.15 K
( We must always convert the temperature unit to Kelvin "K")
* What we want to find :
V2 = ?
* Solution :
101 × 2 / 300.15 = 40 × V2 / 283.15
V2 × 40 / 283.15 ≈ 0.67
V2 = 0.67 × 283.15 / 40
V2 ≈ 4.7 m³
Answer:
vpg = 0.064 N
Explanation:
Upthrust = Volume of fluid displaced
upthrust liquid on the cube g=10ms−2
vpg =0.2 x 0.2 x 0.2 x0.8 x 10= 0.064N
vpg = 0.064 N
hope it helps.
Answer:
Hi myself Shrushtee.
Explanation:
The fuse is connected to the live wire so that the appliance will not become charged (have a potential difference of 230 V) after the fuse has melted due to excessive current. Fuses must be fitted onto the live wire so that when it blows, it will disconnect (isolate) the appliance from the high voltage live wire.