Answer : The specific heat of the substance is 0.0936 J/g °C
Explanation :
The amount of heat Q can be calculated using following formula.

Where Q is the amount of heat required = 300 J
m is the mass of the substance = 267 g
ΔT is the change in temperature = 12°C
C is the specific heat of the substance.
We want to solve for C, so the equation for Q is modified as follows.

Let us plug in the values in above equation.


C = 0.0936 J/g °C
The specific heat of the substance is 0.0936 J/g°C
Answer:
A). 92.02g
Explanation:
Equation of the reaction;
N2 (g)+ 2O2(g)------> 2NO2(g)
Note that the balanced reaction equation is the first step in solving any problem on stoichiometry. Once the reaction equation is correct, the question can be easily solved.
Reaction of one mole of nitrogen gas with two moles of oxygen gas yields two moles of nitrogen dioxide.
Mass of two moles of nitrogen dioxide= 2[14 + 2(16)] = 2[14+32]= 2[46]= 92 gmol-1
Therefore; Mass of two moles of nitrogen dioxide is 92
Answer:
The answers to the question are
1. 2nd and above order order
2. 2nd order
3. 1/2 order
4. 1st order
5. 0 order
Explanation:
We have 
1. For nth order reaction half life
∝ ![\frac{1}{[A_{0} ]^{n-1} }](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BA_%7B0%7D%20%5D%5E%7Bn-1%7D%20%7D)
Therefore for a 0 order reaction increasing concentration of the reactant there will increase 
First order reaction is independent [A₀].
Second order reaction [A₀] decrease, increase.
Similarly for a third order reaction
1. 2nd order
2. 2nd order reaction
3. Order of reaction is 1/2.
4. 1st order reaction.
5. Zero order reaction.
Sublimation occurs more readily when definite weather circumstances are present such as low relative humidity and dry winds. Sublimation also occurs more at higher altitudes where the air pressure is less than at lower altitudes and energy such as strong sunlight is also needed. Sublimation happens a lot in the south face of Mt. Everest which have low temperatures, strong winds, intense sunlight, very low air pressure and the recipe for sublimation to occur.
Iridium-192 is used in cancer treatment, a small cylindrical piece of 192 Ir, 0.6 mm in diameter (0.3mm radius) and 3.5 mm long, is surgically inserted into the tumor. if the density of iridium is 22.42 g/cm3, how many iridium atoms are present in the sample?
Let us start by computing for the volume of the cylinder. V = π(r^2)*h where r and h are the radius and height of the cylinder, respectively. Let's convert all given dimensions to cm first. Radius = 0.03 cm, height is 0.35cm long.
V = π * (0.03cm)^2 * 0.35 cm = 9.896*10^-4 cm^3
Now we have the volume of 192-Ir, let's use the density provided to get it's mass, and once we have the mass let's use the molar mass to get the amount of moles. After getting the amount of moles, we use Avogadro's number to convert moles into number of atoms. See the calculation below and see if all units "cancel":
9.896*10^-4 cm^3 * (22.42 g/cm3) * (1 mole / 191.963 g) * (6.022x10^23 atoms /mole)
= 6.96 x 10^19 atoms of Ir-122 are present.