0.9645 cm³ is the occupied volume by a 21.8 g sample of osmium of density of 22.6 g/cm^3.
Given values are:
- Mass, m = 21.8 g
- Density, d = 22.6 g
Density is given by,

⇒
⇒
⇒
∴The volume is 0.9645cm^3
To learn more about Density: brainly.com/question/15164682 #SPJ4
Answer:
41 g
Explanation:
We have a buffer formed by a weak acid (C₆H₅COOH) and its conjugate base (C₆H₅COO⁻ coming from NaC₆H₅COO). We can find the concentration of C₆H₅COO⁻ (and therefore of NaC₆H₅COO) using the Henderson-Hasselbach equation.
pH = pKa + log [C₆H₅COO⁻]/[C₆H₅COOH]
pH - pKa = log [C₆H₅COO⁻] - log [C₆H₅COOH]
log [C₆H₅COO⁻] = pH - pKa + log [C₆H₅COOH]
log [C₆H₅COO⁻] = 3.87 - (-log 6.5 × 10⁻⁵) + log 0.40
[C₆H₅COO⁻] = [NaC₆H₅COO] = 0.19 M
We can find the mass of NaC₆H₅COO using the following expression.
M = mass NaC₆H₅COO / molar mass NaC₆H₅COO × liters of solution
mass NaC₆H₅COO = M × molar mass NaC₆H₅COO × liters of solution
mass NaC₆H₅COO = 0.19 mol/L × 144.1032 g/mol × 1.5 L
mass NaC₆H₅COO = 41 g
Answer: KMnO4-
Explanation:
You're looking at one potassium plus a polyatomic ion.
So K plus MnO4, equals:
KMnO4-
It also has a molar mass of 158.04 g/mol, I don't know if you need that, but I thought it would be nice to include it.
This statement is True! Lets think about it... When water boils, the water doesnt evaporate from the bottom of the bowl it evaporates from the top!
=)