Answer:
2.4 moles of oxygen are needed to react with 87 g of aluminium.
Explanation:
Chemical equation:
4Al(s) + 3O₂(l) → 2AlO₃(s)
Given data:
Mass of aluminium = 87 g
Moles of oxygen needed = ?
Solution:
Moles of aluminium:
Number of moles of aluminium= Mass/ molar mass
Number of moles of aluminium= 87 g/ 27 g/mol
Number of moles of aluminium= 3.2 mol
Now we will compare the moles of aluminium with oxygen.
Al : O₂
4 : 3
3.2 : 3/4×3.2 = 2.4 mol
2.4 moles of oxygen are needed to react with 87 g of aluminium.
Answer:
Answer is option B . This is because water is said to be highly permeable to the underground soil and thus nourishes it , whereas capillary action will make the water flow upward sllowly , but the water is going underground so it is permeability. Also soil is porous too , but that's only if the water is in the soil , here the water is caused to go underground by some force , so porosity isnt the right option
Explanation:
9ml will be given for the case of dosage calculation order: 3 mg available: 2 mg per 6 ml
Conversion factors are necessary for dosage calculation, such as when translating from pounds to kilograms or liters to milliliters. This approach, which is straightforward in design, enables physicians to deal with different units of measurement and convert factors to arrive at the solution.
dosage calculation techniques serve as a second or third check on the accuracy of the previous computation techniques. Dimensional Analysis, Ratio Proportion, and Formula or Desired Over Have Method are the three main approaches for dosage calculation. dosage calculations are frequently prescribed and labeled based on their weight or, for solutions, their strength, which is the amount of weight dissolved or suspended in a given volume.
To learn more about dosage calculation please visit -
brainly.com/question/12720845
#SPJ4
Answer:
The most stable conformer would be the anti-conformer when the substituent methyl groups are farthest away from each other.
Explanation:
Isomers are chemical compounds with the same molecular formula but with different molecular structures.
Conformers are a special type of isomers that produce different structures when the substituents of a Carbon-Carbon single bond (C-C) are rotated.
In 2,3 dimethyl butane, the substituent methyl groups are located around the second and third Carbon to Carbon single bond.
To achieve a stable configuration, the methyl group substituents need to be as far apart as possible (that is, in an anti-position) to minimise repulsion.
The closer the methyl groups are to each other, the more they repel each other and the more unstable the conformer becomes.
moles = molarity * 1000/volume
7*1000/14.44= 484.76